[1] Chen Tao, Kai-Kuang Ma, and Li-Hui Chen. Tri-state median filter for image denoising. IEEE Transactions on Image Processing, 8(12):1834–1838, Dec. 1999. 1[2] Jingdong Chen, J. Benesty, Yiteng Huang, and S. Doclo. New insights into the noise reduction wiener filter. IEEE Transactions on Audio, Speech, and Language Processing, 14(4):1218–1234, Jul. 2006. 1[3] Antoni Buades, Bartomeu Coll, and J. M. Morel. A nonlocal algorithm for image denoising. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), pages 60–65, Jun. 2005. 1[4] Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and Karen Egiazarian. Image denoising by sparse 3-d transformdomain collaborative filtering. IEEE Transactions on Image Processing, 16(8):2080–2095, Aug. 2007. 1, 2, 7, 8[5] Shuhang Gu, Lei Zhang, Wangmeng Zuo, and Xiangchu Feng. Weighted nuclear norm minimization with application to image denoising. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2862–2869, Jun. 2014. 1, 7, 8[6] Kaibing Zhang, Xinbo Gao, Dacheng Tao, and Xuelong Li. Single image super-resolution with non-local means and steering kernel regression. IEEE Transactions on Image Processing, 21(11):4544–4556, Nov. 2012. 2[7] Ding Liu, Bihan Wen, Yuchen Fan, Chen Change Loy, and Thomas S. Huang. Non-local recurrent network for image restoration. In International Conference on Learning Representations (ICLR), pages 1680–1689, Dec. 2018.1, 2[8] Saeed Anwar and Nick Barnes. Real image denoising with feature attention. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 3155–3164, Oct. 2019. 1, 2, 7, 8[9] Jiahao Pang and Gene Cheung. Graph laplacian regularization for image denoising: Analysis in the continuous domain. IEEE Transactions on Image Processing, 26(4):177–1785, Apr. 2017. 1[10] Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising.[11] FFDNet Toward a Fast and Flexible Solution for CNN based Image Denoising.[12] Toward Convolutional Blind Denoising of Real Photographs.[13] Learning a Single Convolutional Super-Resolution Network for Multiple Degradations. 來源:知乎 作者:初識CV