我們?yōu)槭裁匆M行傅里葉變換?它的意義是什么
點擊下方卡片,關注“新機器視覺”公眾號
視覺/圖像重磅干貨,第一時間送達
關于傅立葉變換,無論是書本還是在網(wǎng)上可以很容易找到關于傅立葉變換的描述,但是大都讓人很難理解太過抽象,盡是一些讓人看了就望而生畏的公式的羅列。
要理解傅立葉變換,確實需要一定的耐心,別一下子想著傅立葉變換是怎么變換的,當然,也需要一定的高等數(shù)學基礎,最基本的是級數(shù)變換,其中傅立葉級數(shù)變換是傅立葉變換的基礎公式。

傅立葉變換的提出
讓我們先看看為什么會有傅立葉變換?傅立葉是一位法國數(shù)學家和物理學家的名字,英語原名是Jean Baptiste Joseph Fourier(1768-1830),F(xiàn)ourier對熱傳遞很感興趣,于1807年在法國科學學會上發(fā)表了一篇論文,運用正弦曲線來描述溫度分布,論文里有個在當時具有爭議性的決斷:任何連續(xù)周期信號可以由一組適當?shù)恼仪€組合而成。
當時審查這個論文的人,其中有兩位是歷史上著名的數(shù)學家拉格朗日(Joseph Louis Lagrange,1736-1813)和拉普拉斯(Pierre Simon de Laplace,1749-1827),當拉普拉斯和其它審查者投票通過并要發(fā)表這個論文時,拉格朗日堅決反對,在近50年的時間里,拉格朗日堅持認為傅立葉的方法無法表示帶有棱角的信號,如在方波中出現(xiàn)非連續(xù)變化斜率。
法國科學學會屈服于拉格朗日的威望,拒絕了傅立葉的工作,幸運的是,傅立葉還有其它事情可忙,他參加了政治運動,隨拿破侖遠征埃及,法國大革命后因會被推上斷頭臺而一直在逃避。直到拉格朗日死后15年,這個論文才被發(fā)表出來。
誰是對的呢?拉格朗日是對的:正弦曲線無法組合成一個帶有棱角的信號。但是,我們可以用正弦曲線來非常逼近地表示它,逼近到兩種表示方法不存在能量差別,基于此,傅立葉是對的。
為什么我們要用正弦曲線來代替原來的曲線呢?如我們也還可以用方波或三角波來代替呀,分解信號的方法是無窮的,但分解信號的目的是為了更加簡單地處理原來的信號。用正余弦來表示原信號會更加簡單,因為正余弦擁有原信號所不具有的性質:正弦曲線保真度。一個正弦曲線信號輸入后,輸出的仍是正弦曲線,只有幅度和相位可能發(fā)生變化,但是頻率和波的形狀仍是一樣的。且只有正弦曲線才擁有這樣的性質,正因如此我們才不用方波或三角波來表示。

傅立葉變換分類
根據(jù)原信號的不同類型,我們可以把傅立葉變換分為四種類別:
非周期性連續(xù)信號:傅立葉變換 (Fourier Transform)
周期性連續(xù)信號:傅立葉級數(shù) (Fourier Series)
非周期性離散信號:離散時域傅立葉變換 (Discrete Time Fourier Transform)
周期性離散信號:離散傅立葉變換 (Discrete Fourier Transform)

這四種傅立葉變換都是針對正無窮大和負無窮大的信號,即信號的的長度是無窮大的,我們知道這對于計算機處理來說是不可能的,那么有沒有針對長度有限的傅立葉變換呢?沒有。
因為正余弦波被定義成從負無窮小到正無窮大,我們無法把一個長度無限的信號組合成長度有限的信號。面對這種困難,方法是把長度有限的信號表示成長度無限的信號,可以把信號無限地從左右進行延伸,延伸的部分用零來表示,這樣,這個信號就可以被看成是非周期性離解信號,我們就可以用到離散時域傅立葉變換的方法。
還有,也可以把信號用復制的方法進行延伸,這樣信號就變成了周期性離散信號,這時我們就可以用離散傅立葉變換方法進行變換。這里我們要學的是離散信號,對于連續(xù)信號我們不作討論,因為計算機只能處理離散的數(shù)值信號,我們的最終目的是運用計算機來處理信號的。
但是對于非周期性的信號,我們需要用無窮多不同頻率的正弦曲線來表示,這對于計算機來說是不可能實現(xiàn)的。所以對于離散信號的變換只有離散傅立葉變換 (DFT) 才能被適用,對于計算機來說只有離散的和有限長度的數(shù)據(jù)才能被處理,對于其它的變換類型只有在數(shù)學演算中才能用到,在計算機面前我們只能用DFT方法,后面我們要理解的也正是DFT方法。這里要理解的是我們使用周期性的信號目的是為了能夠用數(shù)學方法來解決問題,至于考慮周期性信號是從哪里得到或怎樣得到是無意義的。
每種傅立葉變換都分成實數(shù)和復數(shù)兩種方法,對于實數(shù)方法是最好理解的,但是復數(shù)方法就相對復雜許多了,需要懂得有關復數(shù)的理論知識,不過,如果理解了實數(shù)離散傅立葉變換 (real DFT),再去理解復數(shù)傅立葉就更容易了,所以我們先把復數(shù)的傅立葉放到一邊去,先來理解實數(shù)傅立葉變換,在后面我們會先講講關于復數(shù)的基本理論,然后在理解了實數(shù)傅立葉變換的基礎上再來理解復數(shù)傅立葉變換。
還有,這里我們所要說的變換 (transform) 雖然是數(shù)學意義上的變換,但跟函數(shù)變換是不同的,函數(shù)變換是符合一一映射準則的,對于離散數(shù)字信號處理 (DSP),有許多的變換:傅立葉變換、拉普拉斯變換、Z變換、希爾伯特變換、離散余弦變換等,這些都擴展了函數(shù)變換的定義,允許輸入和輸出有多種的值,簡單地說變換就是把一堆的數(shù)據(jù)變成另一堆的數(shù)據(jù)的方法。

傅立葉變換的物理意義
傅立葉變換是線性算子,若賦予適當?shù)姆稊?shù),它還是酉算子;
傅立葉變換的逆變換容易求出,而且形式與正變換非常類似;
正弦基函數(shù)是微分運算的本征函數(shù),從而使得線性微分方程的求解可以轉化為常系數(shù)的代數(shù)方程的求解。在線性時不變的卷積運算為簡單的乘積運算,從而提供了計算卷積的一種簡單手段;
離散形式的傅立葉的物理系統(tǒng)內,頻率是個不變的性質,從而系統(tǒng)對于復雜激勵的響應可以通過組合其對不同頻率正弦信號的響應來獲??;
著名的卷積定理指出 —— 傅立葉變換可以化復變換可以利用數(shù)字計算機快速的算出(其算法稱為快速傅立葉變換算法 (FFT))。
圖像傅立葉變換的物理意義
圖像經(jīng)過二維傅立葉變換后,其變換系數(shù)矩陣表明:若變換矩陣Fn原點設在中心,其頻譜能量集中分布在變換系數(shù)短陣的中心附近。若所用的二維傅立葉變換矩陣Fn 的原點設在左上角,那么圖像信號能量將集中在系數(shù)矩陣的四個角上。這是由二維傅立葉變換本身性質決定的。同時也表明一股圖像能量集中低頻區(qū)域。
變換之后的圖像在原點平移之前四角是低頻,最亮,平移之后中間部分是低頻,最亮,亮度大說明低頻的能量大(幅角比較大)。
—版權聲明—
僅用于學術分享,版權屬于原作者。
若有侵權,請聯(lián)系微信號:yiyang-sy 刪除或修改!
