1. <strong id="7actg"></strong>
    2. <table id="7actg"></table>

    3. <address id="7actg"></address>
      <address id="7actg"></address>
      1. <object id="7actg"><tt id="7actg"></tt></object>

        【推薦系統(tǒng)】AAAI2022推薦系統(tǒng)論文集錦

        共 3097字,需瀏覽 7分鐘

         ·

        2022-01-23 18:55


        2022年第36屆人工智能頂級(jí)會(huì)議AAAI論文列表已經(jīng)放出,此次會(huì)議共收到9251篇論文提交,其中9020篇論文被審稿。最終錄取篇數(shù)為1349篇,錄取率為可憐的15%。由于境外疫情形勢(shì)依然嚴(yán)峻,大會(huì)將在2月22日到3月1日在線上進(jìn)行舉辦。

        較之歷年接受率來說,今年的錄取率可以說是斷崖式下跌。下圖對(duì)2017年至今年的投稿量以及接受率進(jìn)行了可視化,可以說今年的投稿量之多與接受率之低形成了鮮明的對(duì)比。

        關(guān)于對(duì)頂級(jí)會(huì)議歷年論文的分析與整理可點(diǎn)擊下方鏈接:
        與往年的慣例相同,我們分析了今年接收論文的標(biāo)題,可以發(fā)現(xiàn)以下結(jié)論:
        • 深度學(xué)習(xí)技術(shù)仍然是比較火熱的技術(shù)之一;

        • 對(duì)圖數(shù)據(jù)的研究依然是大家關(guān)注的數(shù)據(jù)形式之一;

        • 自監(jiān)督學(xué)習(xí)、半監(jiān)督學(xué)習(xí)、多智能體、表示學(xué)習(xí)是大家主要使用的學(xué)習(xí)范式;

        • 機(jī)器學(xué)習(xí)應(yīng)用如目標(biāo)檢測(cè)、文本分類、語義分割等是目前大家比較關(guān)注的方向。

        完整版清單可從官網(wǎng)下載查看。

        https://aaai.org/Conferences/AAAI-22/wp-content/uploads/2021/12/AAAI-22_Accepted_Paper_List_Main_Technical_Track.pdf

        接下來,特意從1349篇論文中篩選出與推薦系統(tǒng)相關(guān)的15篇文章供大家欣賞(去年的推薦系統(tǒng)論文文章的比例為33/1692),提前領(lǐng)略學(xué)術(shù)前沿趨勢(shì)與牛人的最新想法。

        1. Meta-Learning for Online Update of Recommender Systems

        Minseok Kim, Hwanjun Song, Yooju Shin, Dongmin Park, Kijung Shin, Jae-Gil Lee

        https://minseokkim.net/publication/2022melon_aaai/2022melon_aaai.pdf

        2.?DiPS: Differentiable Policy for Sketching in Recommender Systems

        Aritra Ghosh, Saayan Mitra, Andrew Lan

        https://arxiv.org/pdf/2112.07616

        3.?Low-pass Graph Convolutional Network for Recommendation

        Wenhui Yu, Zixin Zhang, Zheng Qin

        4.?Online certification of preference-based fairness for personalized recommender systems

        Virginie Do, Sam Corbett-Davies, Jamal Atif, Nicolas Usunier

        https://arxiv.org/pdf/2104.14527

        5.?Modeling Attrition in Recommender Systems with Departing Bandits

        Omer Ben-Porat, Lee Cohen, Liu Leqi, Zachary Lipton, Yishay Mansour

        6.?A Dynamic Meta-Learning Model for Time-Sensitive Cold-Start Recommendations

        Krishna P Neupane, Ervine Zheng, Yu Kong, Qi Yu

        7.?Context Uncertainty in Contextual Bandits with Applications to Recommender Systems

        Hao Wang, Yifei Ma, Hao Ding, Yuyang Wan

        8.?Multi-view Intent Disentangle Graph Networks for Bundle Recommendation

        Sen Zhao, Wei Wei, Ding Zou, Xian-Ling Mao

        9.?SMINet: State-Aware Multi-Aspect Interests Representation Network for Cold-Start Users Recommendation

        Wanjie Tao, Yu Li, Liangyue Li, Zulong Chen, Hong Wen, Peilin Chen, Tingting Liang, Quan Lu

        10.?Leaping Through Time with Gradient-based Adaptation for Recommendation

        Nuttapong Chairatanakul, Hoang NT, Xin Liu, Tsuyoshi Murata

        https://arxiv.org/pdf/2112.05914

        11.?Cross-Task Knowledge Distillation in Multi-Task Recommendation

        Chenxiao Yang, Junwei Pan, Xiaofeng Gao, Tingyu Jiang, Dapeng Liu, Guihai Chen

        12.?FPAdaMetric: False-positive-aware Adaptive Metric Learning for Session-based Recommendation

        Jongwon Jeong, Jeong Choi, Hyunsouk Cho, Sehee Chung

        13.?Offline Interactive Recommendation with Natural-Language Feedback

        Ruiyi Zhang, Tong Yu, Yilin Shen, Hongxia Jin

        14.?Learning the Optimal Recommendation from Explorative Users

        Fan Yao, Chuanhao Li, Denis Nekipelov, Hongning Wang, Haifeng Xu

        https://arxiv.org/pdf/2110.03068

        15.?Obtaining Calibrated Probabilities with Personalized Ranking Models

        Wonbin Kweon, SeongKu Kang, Hwanjo Yu

        通過整理發(fā)現(xiàn),此次會(huì)議接收的推薦系統(tǒng)相關(guān)論文主要涉及基于元學(xué)習(xí)的推薦系統(tǒng)2篇,序列化推薦5篇,基于強(qiáng)化學(xué)習(xí)的推薦系統(tǒng)4篇以及冷啟動(dòng)推薦2篇。

        往期精彩回顧




        瀏覽 65
        點(diǎn)贊
        評(píng)論
        收藏
        分享

        手機(jī)掃一掃分享

        分享
        舉報(bào)
        評(píng)論
        圖片
        表情
        推薦
        點(diǎn)贊
        評(píng)論
        收藏
        分享

        手機(jī)掃一掃分享

        分享
        舉報(bào)
        1. <strong id="7actg"></strong>
        2. <table id="7actg"></table>

        3. <address id="7actg"></address>
          <address id="7actg"></address>
          1. <object id="7actg"><tt id="7actg"></tt></object>
            王者女英雄白眼娇羞表情 | 精品一区二区日韩 | 泰国同性男男gayxxxxx | 国产精品嫩草在线 | 久久国产综合精品 | 成人一二三视频 | 亚洲天堂自拍 | 我被两个男的cao尿了 | 欧美另类老妇 | 男女床上运动 |