1. <strong id="7actg"></strong>
    2. <table id="7actg"></table>

    3. <address id="7actg"></address>
      <address id="7actg"></address>
      1. <object id="7actg"><tt id="7actg"></tt></object>

        CVPR 2021 競(jìng)賽匯總

        共 9539字,需瀏覽 20分鐘

         ·

        2021-03-08 06:32

        ↑ 點(diǎn)擊藍(lán)字 關(guān)注極市平臺(tái)

        作者丨Coggle
        來(lái)源丨Coggle數(shù)據(jù)科學(xué)
        編輯丨極市平臺(tái)

        極市導(dǎo)讀

         

        本文匯總了27個(gè)CVPR2021的競(jìng)賽并附有相關(guān)鏈接。 >>加入極市CV技術(shù)交流群,走在計(jì)算機(jī)視覺(jué)的最前沿

        Neural Architecture Search

        1st lightweight NAS challenge and moving beyond

        https://www.cvpr21-nas.com/competition

        早期的NAS方法通過(guò)將每個(gè)神經(jīng)網(wǎng)絡(luò)在訓(xùn)練數(shù)據(jù)上都訓(xùn)練到收斂,然后評(píng)估其效果,需要耗費(fèi)大量的算力資源。

        Track1:Supernet Track

        賽道一為超網(wǎng)絡(luò)賽道,旨在解決OneshotNAS的一致性問(wèn)題;

        Track2: Performance Prediction Track

        賽道二為模型性能預(yù)測(cè)賽道,旨在不做任何訓(xùn)練的情況,準(zhǔn)確的預(yù)測(cè)任意模型結(jié)構(gòu)在特定評(píng)測(cè)集的性能。

        Track3: Dataset-Agnostic Track

        賽道三鼓勵(lì)參與者提交與數(shù)據(jù)無(wú)關(guān),但能夠在完全未知的數(shù)據(jù)集上提供優(yōu)秀結(jié)果的NAS算法。

        JackRabbot Social Grouping and Activity Dataset and Benchmark

        2nd Workshop on Visual Perception for Navigation in Human Environments

        https://jrdb.stanford.edu/workshops/jrdb-cvpr21

        除了JRDB上現(xiàn)有的四個(gè)基準(zhǔn)和挑戰(zhàn)(即2D-3D人員檢測(cè)和跟蹤挑戰(zhàn))之外,在本研討會(huì)中,我們使用新的注釋來(lái)組織兩個(gè)新的挑戰(zhàn):

        • 人類社會(huì)群體檢測(cè)
        • 個(gè)人動(dòng)作檢測(cè)和社交活動(dòng)識(shí)別

        NTIRE 2021 challenges

        New Trends in Image Restoration and Enhancement workshop and challenges on image and video processing

        https://data.vision.ee.ethz.ch/cvl/ntire21/

        NTIRE Image challenges

        • Nonhomogeneous Dehazing
        • Defocus Deblurring using Dual-pixel
        • Depth Guided Image Relighting: Track 1 One-to-One relighting
        • Depth Guided Image Relighting: Track 2 Any-to-Any relighting
        • Perceptual Image Quality Assessment
        • Image Deblurring: Track 1 Low Resolution
        • Image Deblurring: Track 2 JPEG Artifacts
        • Multi-Modal Aerial View Imagery Classification: Track 1 (SAR)
        • Multi-Modal Aerial View Imagery Classification: Track 2 (SAR+EO)
        • Learning the Super-Resolution Space

        NTIRE video/multi-frame challenges

        • Quality enhancement of heavily compressed videos: Track 1 Fixed QP, Fidelity
        • Quality enhancement of heavily compressed videos: Track 2 Fixed QP, Perceptual
        • Quality enhancement of heavily compressed videos: Track 3 Fixed bit-rate, Fidelity
        • Video Super-Resolution: Track 1 Spatial started!
        • Video Super-Resolution: Track 2 Spatio-Temporal
        • Burst Super-Resolution: Track 1 Synthetic
        • Burst Super-Resolution: Track 2 Real
        • High Dynamic Range (HDR): Track 1 Single frame
        • High Dynamic Range (HDR): Track 2 Multiple frames

        Mobile AI 2021 challenges

        • Learned ISP (MediaTek Dimensity APU platform)
        • Image Denoising (Samsung Exynos Mali GPU platform)
        • HDR Image Processing (Huawei Kirin Da Vinci NPU platform)
        • Image Super-Resolution (Synaptics Dolphin NPU platform)
        • Video Super-Resolution (OPPO Snapdragon Adreno GPU platform)
        • Depth Estimation (Raspberry Pi 4 platform)
        • Camera Scene Detection (Apple Bionic platform)

        SHApe Recovery from Partial Textured 3D Scans

        該研討會(huì)的目的是推廣在3D掃描處理中同時(shí)利用形狀和紋理的概念,并特別注意從部分和嘈雜數(shù)據(jù)中恢復(fù)的特定任務(wù)。

        https://cvi2.uni.lu/sharp2021/

        Recovery of Human Body Scans

        Recovery of Generic Object Scans

        Recovery of Feature Edges in 3D Object Scans

        LOVEU: LOng-form VidEo Understanding

        https://sites.google.com/view/loveucvpr21/challenge

        VizWiz Grand Challenge Workshop

        https://vizwiz.org/workshops/2021-workshop/

        Task: Image Captioning

        Given an image, the task is to predict an accurate caption.

        Task: Predict Answer to a Visual Question

        Given an image and question about it, the task is to predict an accurate answer.

        Task: Predict Answerability of a Visual Question

        Given an image and question about it, the task is to predict if the visual question cannot be answered (with a confidence score in that prediction).

        Bridging the Gap between Computational Photography and Visual Recognition

        http://cvpr2021.ug2challenge.org/

        TRACK 1: OBJECT DETECTION IN POOR VISIBILITY ENVIRONMENTS

        TRACK 2: ACTION RECOGNITION FROM DARK VIDEOS

        4th Workshop and Challenge on Learned Image Compression

        image compression track

        images need to be compressed to 0.075 bpp, 0.15 bpp, and 0.3 bpp (bits per pixel).

        video compression track

        short video clips need to be compressed to around 1 Mbit/s.

        perceptual metric track

        human preferences on pairs of images will have to be predicted. The image pairs will come from the decoders submitted to the image compression track.

        5th AI City Challenge

        https://www.aicitychallenge.org/

        Challenge Track 1: Multi-Class Multi-Movement Vehicle Counting Using IoT Devices

        Participating teams will count four-wheel vehicles and freight trucks that follow pre-defined movements from multiple camera scenes.

        Challenge Track 2: City-Scale Multi-Camera Vehicle Re-Identification

        Participating teams will perform vehicle re-identification based on vehicle crops from multiple cameras placed at multiple intersections.

        Challenge Track 3: City-Scale Multi-Camera Vehicle Tracking

        Participating teams will track vehicles across multiple cameras both at a single intersection and across multiple intersections spread out across a city.

        Challenge Track 4: Traffic Anomaly Detection

        Participating teams will submit all anomalies detected in the test data, including car crashes, stalled vehicles based on video feeds from multiple cameras at intersections and along highways.

        Challenge Track 5: Natural Language-Based Vehicle Retrieval

        Natural language (NL) description offers another useful way to specify vehicle track queries.

        Large-scale Video Object Segmentation Challenge

        https://youtube-vos.org/challenge/2021/

        Our workshop has three challenges for different video segmentation tasks including semi-supervised video object segmentation, video instance segmentation and referring video object segmentation.

        Track 1: Video Object Segmentation

        Track 2: Video Instance Segmentation

        Track 3: Referring Video Object Segmentation

        Looking at People Large Scale Signer Independent Isolated SLR

        http://chalearnlap.cvc.uab.es/challenge/43/description/

        We are organizing a challenge on isolated sign language recognition from signer-independent non-controlled RGB-D data involving a large number of sign categories (>200).

        RGB Competition Track

        RGB+D Competition Track

        3rd ScanNet Indoor Scene Understanding Challenge

        http://www.scan-net.org/cvpr2021workshop/

        International Challenge on Activity Recognition (ActivityNet)

        http://activity-net.org/challenges/2021/

        n this installment of the challenge, we will host seven guest tasks (tentative) focusing on different aspects of the activity recognition problem, especially expanding from online consumer video challenges to challenges on surveillance and first-person video.

        Agriculture-Vision: Challenges & Opportunities for Computer Vision in Agriculture

        https://www.agriculture-vision.com/

        The 2nd Agriculture-Vision Prize Challenge aims to encourage research in developing novel and effective algorithms for agricultural pattern recognition from aerial images. Submissions will be evaluated and ranked by model performance.This year, we will be hosting two challenge tracks: supervised track and semi-supervised track. The top three performing submissions will receive prize rewards and presentation opportunities at our workshop.

        Built Environment for the Design, Construction, and Operation of Buildings

        https://cv4aec.github.io/

        Semantic and Instance Segmentation of building elements

        Object Attribute Prediction of building elements

        Learning from Limited or Imperfect Data

        https://l2id.github.io/

        Learning from limited or imperfect data (L^2ID) refers to a variety of studies that attempt to address challenging pattern recognition tasks by learning from limited, weak, or noisy supervision.

        Open World Vision

        http://www.cs.cmu.edu/~shuk/open-world-vision.html#competition

        Open-set image classification requires a model to distinguish novel, anomalous and semantically unknown (e.g., open-set) test-time examples.

        Adversarial Machine Learning in Real-World Computer Vision Systems and Online Challenges

        https://aisecure-workshop.github.io/amlcvpr2021/

        Adversarial Attacks on ML Defense Models

        Unrestricted Adversarial Attacks on ImageNet

        Continual Learning in Computer Vision

        https://eval.ai/web/challenges/challenge-page/829/overview

        Robust Video Scene Understanding: Tracking and Video Segmentation

        https://eval.vision.rwth-aachen.de/rvsu-workshop21/

        EarthVision: Large Scale Computer Vision for Remote Sensing Imagery

        http://www.classic.grss-ieee.org/earthvision2021/challenge.html

        DynamicEarthNet Challenge

        FloodNet Challenge

        Image Matching: Local Features & Beyond

        https://image-matching-workshop.github.io/

        Chart Question Answering Workshop

        https://cqaw.github.io/

        The CQA challenge includes 3 levels of perception: from low-level visualization building blocks to semantic reasoning that requires text extraction.

        2nd. Thermal Image Super-Resolution Challenge

        https://pbvs-workshop.github.io/challenge.html

        The Eight Workshop on Fine-Grained Visual Categorization

        https://sites.google.com/view/fgvc8

        • GeoLifeCLEF2021
        • Semi-iNat2021
        • iNatChallenge2021
        • iMet2021
        • iMat-Fashion2021
        • Hotel-ID2021
        • HerbariumChallenge2021
        • iWildCam2021
        • Plant Pathology Challenge 2021

        GAZE 2021 Challenges

        The GAZE 2021 Challenges are hosted on Codalab, and can be found at:

        • ETH-XGaze Challenge: https://competitions.codalab.org/competitions/28930
        • EVE Challenge: https://competitions.codalab.org/competitions/28954

        Autonomous Navigation in Unconstrained Environments

        http://cvit.iiit.ac.in/autonue2021/challenge/

        • Challenges for domain adaptation with varying levels of supervision.
        • Challenges for semantic segmentation.

        其他鏈接

        由于很多競(jìng)賽還在更新,完整競(jìng)賽參考CVPR官網(wǎng):

        • http://cvpr2021.thecvf.com/workshops-schedule

        • https://github.com/skrish13/ml-contests-conf


        推薦閱讀


        CVPR 2021接收結(jié)果出爐!錄用1663篇,接受率顯著提升,你的論文中了嗎?(附論文下載)

        2021-03-01

        CVPR2021審稿意見(jiàn)出爐!學(xué)術(shù)論文投稿與Rebuttal經(jīng)驗(yàn)分享

        2021-01-19

        冠軍方案分享:ICPR 2020大規(guī)模商品圖像識(shí)別挑戰(zhàn)賽冠軍解讀

        2021-01-17



        # CV技術(shù)社群邀請(qǐng)函 #

        △長(zhǎng)按添加極市小助手
        添加極市小助手微信(ID : cvmart2)

        備注:姓名-學(xué)校/公司-研究方向-城市(如:小極-北大-目標(biāo)檢測(cè)-深圳)


        即可申請(qǐng)加入極市目標(biāo)檢測(cè)/圖像分割/工業(yè)檢測(cè)/人臉/醫(yī)學(xué)影像/3D/SLAM/自動(dòng)駕駛/超分辨率/姿態(tài)估計(jì)/ReID/GAN/圖像增強(qiáng)/OCR/視頻理解等技術(shù)交流群


        每月大咖直播分享、真實(shí)項(xiàng)目需求對(duì)接、求職內(nèi)推、算法競(jìng)賽、干貨資訊匯總、與 10000+來(lái)自港科大、北大、清華、中科院、CMU、騰訊、百度等名校名企視覺(jué)開(kāi)發(fā)者互動(dòng)交流~


        △點(diǎn)擊卡片關(guān)注極市平臺(tái),獲取最新CV干貨

        覺(jué)得有用麻煩給個(gè)在看啦~  
        瀏覽 162
        點(diǎn)贊
        評(píng)論
        收藏
        分享

        手機(jī)掃一掃分享

        分享
        舉報(bào)
        評(píng)論
        圖片
        表情
        推薦
        點(diǎn)贊
        評(píng)論
        收藏
        分享

        手機(jī)掃一掃分享

        分享
        舉報(bào)
        1. <strong id="7actg"></strong>
        2. <table id="7actg"></table>

        3. <address id="7actg"></address>
          <address id="7actg"></address>
          1. <object id="7actg"><tt id="7actg"></tt></object>
            亚洲AV色成人无码影院 | 米奇7777日日操 | 94久久 | 上原瑞穗av无删减版 | www.com超碰 | 好叼操这里只有精品 | 免费无码婬片AAAA片 | 天天日老逼| 做爰高潮片高潮视频 | 成人免费毛片视频 |