1. 資源|機器學(xué)習(xí)/深度學(xué)習(xí)線上開放課程集錦

        共 4677字,需瀏覽 10分鐘

         ·

        2020-08-12 15:40



        寫在最前面


        本文整理了機器學(xué)習(xí)/深度學(xué)習(xí)比較優(yōu)秀的線上開放課程,主要為了方便小伙伴們個人學(xué)習(xí)所用,目前機器學(xué)習(xí)與深度學(xué)習(xí)發(fā)展迅速,新的課程也層出不窮,所以本帖也會不定期更新,包括更新課程網(wǎng)址以及添加新的好課程。所以,各位小伙伴有比較好的課程一定要在評論區(qū)留言,我看到后會將其更新上來,以分享給其它小伙伴。也歡迎留下你的贊!

        注意這里對各個課程并沒有做好與壞的評論,一般來說,入門機器學(xué)習(xí)的經(jīng)典課程是Stanford: CS229,入門深度學(xué)習(xí)的經(jīng)典課程是Stanford: CS231n。

        1

        Table of Contents


        • Deep Learning

        • Machine Learning

        • Reinforcement Learning

        • Computer Vision

        • Artificial Intelligence

        2

        Deep Learning


        1. [CMU: 11-785 Introduction to Deep Learning](http://deeplearning.cs.cmu.edu/) [Spring 2018] [DL]

        2. [Stanford: CS230 Deep Learning](https://web.stanford.edu/class/cs230/) [Winter 2018][DL] [[Ng中文筆記-黃海廣](http://www.ai-start.com/)]

        3. [University of Chicago: CMSC 35246 Deep Learning ](http://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html) [Spring 2017][DL]

        4. [Stanford: CS231n Convolutional Neural Networks for Visual Recognition](http://cs231n.stanford.edu/) [Spring 2017][CV] [[中文翻譯](http://www.mooc.ai/course/268#modal)]

        5. [Stanford: CS224n Natural Language Processing with Deep Learning](http://web.stanford.edu/class/cs224n/) [Winter 2018][NLP]

        6. [Stanford: CS 20 Tensorflow for Deep Learning Research](http://web.stanford.edu/class/cs20si/) [Winter 2018][TensorFlow]

        7. [Stanford: Theories of Deep Learning (STATS 385)](https://stats385.github.io/) [Fall 2017][DL]

        8. [CMU: 10707 Deep Learning](http://www.cs.cmu.edu/~rsalakhu/10707/) [Fall 2017][DL]

        9. [National Taiwan University: Applied Deep Learning /Machine Learning and Having It Deep and Structured](https://www.csie.ntu.edu.tw/~yvchen/f106-adl/) [2017 Fall][DL] [[Hung-yi Lee](http://speech.ee.ntu.edu.tw/~tlkagk/index.html)]

        10. [Theano: Deep Learning Tutorials](http://deeplearning.net/tutorial/) [Theano]

        11. [Mxnet: Deep Learning-The Straight Dope](http://gluon.mxnet.io/) [2017][Mxnet] [[中文](http://zh.gluon.ai/)]

        12. [MIT: 6.S191 Introduction to Deep Learning](http://introtodeeplearning.com/) [2018][DL]

        13. [UVA: DEEP LEARNING COURSE](http://uvadlc.github.io/) [DL]

        14. [Fast.ai: Practical Deep Learning For Coders](http://course.fast.ai/) [2018][DL]

        15. [CMU: CS 11-747 Neural networks fro NLP](http://phontron.com/class/nn4nlp2018/#) [Spring 2018][NLP]

        16. [Stanford: CS224S / LINGUIST285 - Spoken Language Processing](http://web.stanford.edu/class/cs224s/) [Spring 2017][Speech Recognition]

        17. [Berkeley: CS 294-131: Special Topics in Deep Learning](https://berkeley-deep-learning.github.io/cs294-131-f17/) [Fall 2017][Advanced DL]

        18. [CMU: 16-385 Computer Vision](http://www.cs.cmu.edu/~16385/) [Spring 2018][CV]

        19. [Columbia University: E6894 Deep Learning for Computer Vision, Speech, and Language](http://llcao.net/cu-deeplearning17/schedule.html) [Spring 2017][DL]

        20. [Colorado: CSCI 5922 Neural Networks and Deep Learning](https://www.cs.colorado.edu/~mozer/Teaching/syllabi/DeepLearningFall2017/) [Fall 2017][DL]

        21. [UIUC: CS 598 LAZ Cutting-Edge Trends in Deep Learning and Recognition](http://slazebni.cs.illinois.edu/spring17/) [2017][DL]

        22. [UPC: Deep Learning for Speech and Language](https://telecombcn-dl.github.io/2017-dlsl/) [2017 Winter][Speech Recognition]

        23. [toronto: CSC 321 Intro to Neural Networks and Machine Learning](http://www.cs.toronto.edu/~rgrosse/courses/csc321_2018/) [CSC 321 Winter 2018][DL]

        3

        Computer Vision


        1.[toronto: CSC420: Intro to Image Understanding](http://www.teach.cs.toronto.edu/~csc420h/fall/) [Fall 2017][CV]

        4

        Machine Learning


        1. [Stanford: CS229 Machine Learning](http://cs229.stanford.edu/) [Autumn 2017][ML]

        2. [University of Notre Dame: Statistical Computing for Scientists and Engineers](https://www.zabaras.com/statisticalcomputing) [Fall 2017][SL]

        3. [CMU: Statistical Machine Learning](http://www.stat.cmu.edu/~ryantibs/statml/) [Spring 2017][ML]

        4. [Carnegie Mellon University:10-701/15-781 Machine Learning](http://www.cs.cmu.edu/~tom/10701_sp11/) [Spring 2011][ML]

        5. [toronto: CSC411? introduction to Machine Learning](http://www.cs.toronto.edu/~jlucas/teaching/csc411/) [Fall 2017][ML]

        6. [MIT: 6.S099 Artificial General Intelligence](https://agi.mit.edu/) [2018]

        7. [MIT 6.S094: Deep Learning for Self-Driving Cars](https://selfdrivingcars.mit.edu/) [2018]

        5

        Reinforcement Learning


        1. [Berkeley: CS 294 Deep Reinforcement Learning](http://rll.berkeley.edu/deeprlcourse/?utm_source=qq&utm_medium=social) [Fall 2017][RL]

        2. [CMU: 10703 Deep RL and Control](http://www.cs.cmu.edu/~rsalakhu/10703/) [Fall 2018][RL]

        3. [Stanford: CS234: Reinforcement Learning](http://web.stanford.edu/class/cs234/index.html?utm_source=wechat_session&utm_medium=social) [Winter 2018][RL]




        參考

        1. 深度學(xué)習(xí)名校課程大全:?https://zhuanlan.zhihu.com/p/33580103

        2. Awesome Deep Learning:?https://github.com/xiaohu2015/awesome-deep-learning











        機器學(xué)習(xí)算法全棧工程師


        ? ? ? ? ? ? ? ? ? ? ? ? ? ? 一個用心的公眾號

        長按,識別,加關(guān)注

        進群,學(xué)習(xí),得幫助

        你的關(guān)注,我們的熱度,

        我們一定給你學(xué)習(xí)最大的幫助



        瀏覽 59
        點贊
        評論
        收藏
        分享

        手機掃一掃分享

        分享
        舉報
        評論
        圖片
        表情
        推薦
        點贊
        評論
        收藏
        分享

        手機掃一掃分享

        分享
        舉報
          
          

            1. 亚洲人妖操逼 | 性欧美最猛 | 日韩成人精品在线观看 | 少妇放荡的呻吟干柴烈火电影 | 国产黄色视频在线观看免费 |