1. <strong id="7actg"></strong>
    2. <table id="7actg"></table>

    3. <address id="7actg"></address>
      <address id="7actg"></address>
      1. <object id="7actg"><tt id="7actg"></tt></object>

        100 個(gè)統(tǒng)計(jì)學(xué)和 R 語言學(xué)習(xí)資源網(wǎng)站

        共 12840字,需瀏覽 26分鐘

         ·

        2022-06-21 11:04

        簡(jiǎn)介

        原文:統(tǒng)計(jì)學(xué) & R學(xué)習(xí)資源

        編輯:莊閃閃的R語言手冊(cè),pythonic生物人

        作者:CoffeeCat[1]

        轉(zhuǎn)載于:Coffee學(xué)生物統(tǒng)計(jì)的地方[2]

        注:有些鏈接需要科學(xué)上網(wǎng)/較硬的英文閱讀能力才能愉快地體驗(yàn)知識(shí)/技術(shù)帶來的快感。如果公眾號(hào)閱讀體驗(yàn)不佳,可以在文末原文鏈接跳轉(zhuǎn)。

        1.個(gè)人主頁(yè)、博客、社區(qū)、論壇

        北大李東風(fēng)[3] 

        中科大張偉平[4]

        謝益輝(人稱謝大大)[5]統(tǒng)計(jì)之都論壇[6]創(chuàng)始人(與之有關(guān)的統(tǒng)計(jì)之都[7])

        統(tǒng)計(jì)學(xué)資源鏈接大全[8]:知名 統(tǒng)計(jì)系、統(tǒng)計(jì)學(xué)會(huì)、統(tǒng)計(jì)組織統(tǒng)計(jì)軟件、統(tǒng)計(jì)期刊的官網(wǎng)(該老師的主頁(yè)[9]

        斯坦福大學(xué)統(tǒng)計(jì)系:Trevor Hastie[10]、Jerome H. Friedman[11]Rob Tibshirani[12]

        顧凱[13]:統(tǒng)計(jì)分析師;R、SAS、醫(yī)學(xué)統(tǒng)計(jì)博主

        revolutionanalytics[14]:一個(gè)R社區(qū)(Revolution Analytics開發(fā)了Revolution R,后來被微軟收購(gòu))

        r-bloggers[15]:R博客

        Statistics How To[16]:統(tǒng)計(jì)學(xué)與SPSS, Minitab, Excel

        Statistical Modeling, Causal Inference, and Social Science[17]:哥大統(tǒng)計(jì)“統(tǒng)計(jì)建模,因果推論和社會(huì)科學(xué)”

        Error Statistics Philosophy[18]:統(tǒng)計(jì)哲學(xué)家Deborah G. Mayo

        Simply Statistics[19]:三位生物統(tǒng)計(jì)專家的Jeff Leek[20], Roger Peng[21], Rafa Irizarry[22]的博客

        FLOWINGDATA[23]:分析、數(shù)據(jù)可視化(付費(fèi))

        Statistics by Jim[24]:使統(tǒng)計(jì)更直觀

        2.電子書、課程

        Library Genesis[25]:外文電子書大全。結(jié)合亞馬遜[26]、Routledge[27](Chapman \& Hall/CRC Texts in Statistical Science[28]、Chapman \& Hall/CRC Biostatistics Series[29])、Springer[30](Springer Statistics[31])、Elsevier[32]、Oxford University Press[33](Probability \& Statistics[34])、Cambridge University Press[35](Statistics and probability[36])……幾乎可以找到你想要的一切。

        電子書From Bookdown[37]:

        鏈接網(wǎng)頁(yè)上方許多按鈕是可以按的,請(qǐng)自行探索

        數(shù)據(jù)科學(xué)中的R語言[38]:非常全面的R教程

        R語言忍者秘籍[39]:謝大大的R教程

        現(xiàn)代統(tǒng)計(jì)圖形[40]:謝大大R可視化的佳作

        Statistics Handbook[41]:R語言統(tǒng)計(jì)分析小冊(cè)子(有類似的中文的:薛毅老師的《統(tǒng)計(jì)建模與R軟件》)

        R for Data Science[42]:COPSS獎(jiǎng)得主、RStudio首席科學(xué)家Hadley Wickham[43]的傾力之作,學(xué)習(xí)tidyverse[44]重要語法的不二之選

        Advanced R[45]Hadley Wickham[46]的提高R語言編程技能(本書的習(xí)題解答[47])

        R Graphics Cookbook[48]:R基礎(chǔ)繪圖圣經(jīng)

        Data Visualization with R[49]:R語言實(shí)戰(zhàn)的作者的另一個(gè)作品

        R Gallery Book[50]The R Graph Gallery[51]的完整指南

        Beyond Multiple Linear Regression[52]:回歸分析的拓展:廣義線性模型和分層模型

        Applied longitudinal data analysis in brms and the tidyverse[53]:縱向數(shù)據(jù)分析

        Interpretable Machine Learning[54]:可解釋機(jī)器學(xué)習(xí)

        現(xiàn)代應(yīng)用統(tǒng)計(jì)與R語言[55]:顧名思義

        R語言教程[56]:同上

        統(tǒng)計(jì)計(jì)算[57]:同上

        零基礎(chǔ)學(xué)R語言[58]:同上

        Rmd權(quán)威指南[59]:by謝大大

        Rmd中文指南[60]:這本似乎還未完待續(xù)

        blogdown[61]:謝大大用R寫博客

        bookdown[62]:謝大大用R寫書

        電子書、在線課程、教程

        生物統(tǒng)計(jì)手冊(cè):Handbook of Biological Statistics[63] 以及它的R陪同:An R Companion for the Handbook of Biological Statistics[64]

        部分免費(fèi)的數(shù)據(jù)科學(xué)課程:DataCamp[65]Dataquest[66]、Datanovia[67]

        Biomedical Data Science[68]:生物醫(yī)學(xué)數(shù)據(jù)科學(xué)

        Introduction to Econometrics with R[69]:R語言計(jì)量經(jīng)濟(jì)學(xué)導(dǎo)論(量:第四聲)

        Forecasting: Principles and Practice (3rd ed)[70]:旨在全面介紹預(yù)測(cè)方法

        以下兩本是統(tǒng)計(jì)學(xué)習(xí)圣經(jīng):

        An Introduction to Statistical Learning\(1 ed.\)[71]:ISLR第一版(2021年夏季出第二版:官網(wǎng)[72])

        The Elements of Statistical Learning[73]:ESL官網(wǎng)

        3.R Packages

        Awesome R[74]:優(yōu)秀的R包和資料

        tidyverse[75]、tidymodels[76]:分別代表數(shù)據(jù)分析、統(tǒng)計(jì)模型的一套流程

        ggplot2[77] & its 82 extensions[78]:可視化領(lǐng)域的少林

        shiny[79]:交互、可視化、分析平臺(tái)(它的畫廊[80])

        plotly[81]:可視化另一佳作

        htmlwidgets for R[82]:126個(gè)HTML圖形插件

        R任務(wù)視圖[83]:包含了四十多個(gè)熱門主題,每個(gè)主題下面都有幾十個(gè)包供你選擇

        xaringan[84]:謝大大用R寫ppt英文模板[85]、中文模板[86]

        R數(shù)據(jù)集:R自帶的datesets[87] package、更全的Rdatasets[88](不是package,只是含有dataset的package的信息)

        4.Others

        R官方文檔[89]、R貢獻(xiàn)文檔[90]

        timeline-of-statistics.pdf[91]:簡(jiǎn)明統(tǒng)計(jì)學(xué)史(by ASA)

        RStudio的cheatsheet[92]:快速回顧一些R包的基本語法(支持郵件訂閱;鼓勵(lì)大家參與到該網(wǎng)址中的中文翻譯項(xiàng)目;當(dāng)然除了由RStudio發(fā)布的cheatsheet,還有其他機(jī)構(gòu)也會(huì)發(fā)布,比如DataCamp的cheatsheet[93],其中還有Python的)

        幫助自學(xué):

        UCB統(tǒng)計(jì)系推薦閱讀清單[94]

        ASA的統(tǒng)計(jì)學(xué)本科課程大綱[95]

        閱讀材料:

        Statistical Science Conversations[96]:IMS的與一百多位統(tǒng)計(jì)學(xué)家的訪談專欄

        How R Helps Airbnb Make the Most of its Data[97]

        Why Is It Called That Way\?\! – Origin and Meaning of R Package Names[98]:一些R包名稱的由來

        Tidy Data[99]:by Hadley Wickham

        未完待續(xù).

        參考資料

        [1]

        CoffeeCat: https://www.zhihu.com/people/CoffeeCat2000

        [2]

        Coffee學(xué)生物統(tǒng)計(jì)的地方: https://www.zhihu.com/column/c_1242033096192262144

        [3]

        北大李東風(fēng): https://link.zhihu.com/?target=https%3A//www.math.pku.edu.cn/teachers/lidf/

        [4]

        中科大張偉平: https://link.zhihu.com/?target=http%3A//staff.ustc.edu.cn/~zwp/teach.htm

        [5]

        謝益輝: https://link.zhihu.com/?target=https%3A//yihui.org/

        [6]

        統(tǒng)計(jì)之都論壇: https://link.zhihu.com/?target=https%3A//d.cosx.org/

        [7]

        統(tǒng)計(jì)之都: https://link.zhihu.com/?target=https%3A//cosx.org/

        [8]

        統(tǒng)計(jì)學(xué)資源鏈接大全: https://link.zhihu.com/?target=http%3A//staff.ustc.edu.cn/~ynyang/stat-resources.html

        [9]

        該老師的主頁(yè): https://link.zhihu.com/?target=http%3A//staff.ustc.edu.cn/~ynyang

        [10]

        Trevor Hastie: https://link.zhihu.com/?target=http%3A//www-stat.stanford.edu/~hastie/

        [11]

        Jerome H. Friedman: https://link.zhihu.com/?target=http%3A//statweb.stanford.edu/~jhf/

        [12]

        Rob Tibshirani: https://link.zhihu.com/?target=http%3A//statweb.stanford.edu/~tibs/

        [13]

        顧凱: https://link.zhihu.com/?target=https%3A//www.bioinfo-scrounger.com/

        [14]

        revolutionanalytics: https://link.zhihu.com/?target=https%3A//blog.revolutionanalytics.com/

        [15]

        r-bloggers: https://link.zhihu.com/?target=https%3A//www.r-bloggers.com/

        [16]

        Statistics How To: https://link.zhihu.com/?target=https%3A//www.statisticshowto.com/

        [17]

        Statistical Modeling, Causal Inference, and Social Science: https://link.zhihu.com/?target=https%3A//statmodeling.stat.columbia.edu/

        [18]

        Error Statistics Philosophy: https://link.zhihu.com/?target=https%3A//errorstatistics.com/

        [19]

        Simply Statistics: https://link.zhihu.com/?target=https%3A//simplystatistics.org/

        [20]

        Jeff Leek: https://link.zhihu.com/?target=http%3A//www.biostat.jhsph.edu/~jleek/research.html

        [21]

        Roger Peng: https://link.zhihu.com/?target=http%3A//www.biostat.jhsph.edu/~rpeng/

        [22]

        Rafa Irizarry: https://link.zhihu.com/?target=http%3A//rafalab.dfci.harvard.edu/

        [23]

        FLOWINGDATA: https://link.zhihu.com/?target=https%3A//flowingdata.com/

        [24]

        Statistics by Jim: https://link.zhihu.com/?target=https%3A//statisticsbyjim.com/

        [25]

        Library Genesis: https://link.zhihu.com/?target=http%3A//libgen.rs/

        [26]

        亞馬遜: https://link.zhihu.com/?target=http%3A//amazon.com/

        [27]

        Routledge: https://link.zhihu.com/?target=https%3A//www.routledge.com/

        [28]

        Chapman & Hall/CRC Texts in Statistical Science: https://link.zhihu.com/?target=https%3A//www.routledge.com/Chapman--HallCRC-Texts-in-Statistical-Science/book-series/CHTEXSTASCI

        [29]

        Chapman & Hall/CRC Biostatistics Series: https://link.zhihu.com/?target=https%3A//www.routledge.com/Chapman--HallCRC-Biostatistics-Series/book-series/CHBIOSTATIS

        [30]

        Springer: https://link.zhihu.com/?target=https%3A//www.springer.com/

        [31]

        Springer Statistics: https://link.zhihu.com/?target=https%3A//www.springer.com/gp/statistics

        [32]

        Elsevier: https://link.zhihu.com/?target=https%3A//www.elsevier.com/

        [33]

        Oxford University Press: https://link.zhihu.com/?target=https%3A//global.oup.com/academic/%3Fcc%3Dus%26lang%3Den%26

        [34]

        Probability & Statistics: https://link.zhihu.com/?target=https%3A//global.oup.com/academic/category/science-and-mathematics/mathematics/probability-and-statistics/%3Fcc%3Dus%26lang%3Den%26

        [35]

        Cambridge University Press: https://link.zhihu.com/?target=https%3A//www.cambridge.org/cn/academic

        [36]

        Statistics and probability: https://link.zhihu.com/?target=https%3A//www.cambridge.org/cn/academic/subjects/statistics-probability/

        [37]

        Bookdown: https://link.zhihu.com/?target=https%3A//bookdown.org/home/archive/

        [38]

        數(shù)據(jù)科學(xué)中的R語言: https://link.zhihu.com/?target=https%3A//bookdown.org/wangminjie/R4DS/

        [39]

        R語言忍者秘籍: https://link.zhihu.com/?target=https%3A//bookdown.org/yihui/r-ninja/

        [40]

        現(xiàn)代統(tǒng)計(jì)圖形: https://link.zhihu.com/?target=https%3A//bookdown.org/xiangyun/msg/

        [41]

        Statistics Handbook: https://link.zhihu.com/?target=https%3A//bookdown.org/mpfoley1973/statistics/

        [42]

        R for Data Science: https://link.zhihu.com/?target=https%3A//bookdown.org/roy_schumacher/r4ds/

        [43]

        Hadley Wickham: https://link.zhihu.com/?target=http%3A//hadley.nz/

        [44]

        tidyverse: https://link.zhihu.com/?target=https%3A//www.tidyverse.org/packages/

        [45]

        Advanced R: https://link.zhihu.com/?target=https%3A//adv-r.hadley.nz/

        [46]

        Hadley Wickham: https://link.zhihu.com/?target=http%3A//hadley.nz/

        [47]

        習(xí)題解答: https://link.zhihu.com/?target=https%3A//advanced-r-solutions.rbind.io/

        [48]

        R Graphics Cookbook: https://link.zhihu.com/?target=https%3A//r-graphics.org/

        [49]

        Data Visualization with R: https://link.zhihu.com/?target=https%3A//rkabacoff.github.io/datavis/

        [50]

        R Gallery Book: https://link.zhihu.com/?target=https%3A//bookdown.org/content/b298e479-b1ab-49fa-b83d-a57c2b034d49/

        [51]

        The R Graph Gallery: https://link.zhihu.com/?target=https%3A//www.r-graph-gallery.com/

        [52]

        Beyond Multiple Linear Regression: https://link.zhihu.com/?target=https%3A//bookdown.org/roback/bookdown-BeyondMLR/

        [53]

        Applied longitudinal data analysis in brms and the tidyverse: https://link.zhihu.com/?target=https%3A//bookdown.org/content/ef0b28f7-8bdf-4ba7-ae2c-bc2b1f012283/

        [54]

        Interpretable Machine Learning: https://link.zhihu.com/?target=https%3A//christophm.github.io/interpretable-ml-book/

        [55]

        現(xiàn)代應(yīng)用統(tǒng)計(jì)與R語言: https://link.zhihu.com/?target=https%3A//bookdown.org/xiangyun/masr/

        [56]

        R語言教程: https://link.zhihu.com/?target=https%3A//www.math.pku.edu.cn/teachers/lidf/docs/Rbook/html/_Rbook/index.html

        [57]

        統(tǒng)計(jì)計(jì)算: https://link.zhihu.com/?target=https%3A//www.math.pku.edu.cn/teachers/lidf/docs/statcomp/html/_statcompbook/index.html

        [58]

        零基礎(chǔ)學(xué)R語言: https://link.zhihu.com/?target=https%3A//bookdown.org/qiyuandong/intro_r/

        [59]

        Rmd權(quán)威指南: https://link.zhihu.com/?target=https%3A//bookdown.org/yihui/rmarkdown/

        [60]

        Rmd中文指南: https://link.zhihu.com/?target=https%3A//bookdown.org/qiushi/rmarkdown-guide/

        [61]

        blogdown: https://link.zhihu.com/?target=https%3A//bookdown.org/yihui/blogdown/

        [62]

        bookdown: https://link.zhihu.com/?target=https%3A//bookdown.org/home/about/

        [63]

        Handbook of Biological Statistics: https://link.zhihu.com/?target=http%3A//www.biostathandbook.com/

        [64]

        An R Companion for the Handbook of Biological Statistics: https://link.zhihu.com/?target=https%3A//rcompanion.org/rcompanion/index.html

        [65]

        DataCamp: https://zhuanlan.zhihu.com/p/366590161/www.datacamp.com

        [66]

        Dataquest: https://link.zhihu.com/?target=https%3A//www.dataquest.io/

        [67]

        Datanovia: https://link.zhihu.com/?target=https%3A//www.datanovia.com/en/

        [68]

        Biomedical Data Science: https://link.zhihu.com/?target=http%3A//genomicsclass.github.io/book/

        [69]

        Introduction to Econometrics with R: https://link.zhihu.com/?target=https%3A//www.econometrics-with-r.org/

        [70]

        Forecasting: Principles and Practice (3rd ed): https://link.zhihu.com/?target=https%3A//otexts.com/fpp3/index.html

        [71]

        An Introduction to Statistical Learning(1 ed.): https://link.zhihu.com/?target=https%3A//www.statlearning.com/s/ISLRSeventhPrinting.pdf

        [72]

        官網(wǎng): https://link.zhihu.com/?target=https%3A//www.statlearning.com/

        [73]

        The Elements of Statistical Learning: https://link.zhihu.com/?target=https%3A//web.stanford.edu/~hastie/ElemStatLearn/

        [74]

        Awesome R: https://link.zhihu.com/?target=https%3A//github.com/qinwf/awesome-R/blob/master/README.md

        [75]

        tidyverse: https://link.zhihu.com/?target=https%3A//www.tidyverse.org/packages/

        [76]

        tidymodels: https://link.zhihu.com/?target=https%3A//www.tidymodels.org/packages/

        [77]

        ggplot2: https://link.zhihu.com/?target=https%3A//ggplot2.tidyverse.org/

        [78]

        its 82 extensions: https://link.zhihu.com/?target=https%3A//exts.ggplot2.tidyverse.org/gallery/

        [79]

        shiny: https://link.zhihu.com/?target=https%3A//shiny.rstudio.com/

        [80]

        它的畫廊: https://link.zhihu.com/?target=https%3A//shiny.rstudio.com/gallery/

        [81]

        plotly: https://link.zhihu.com/?target=https%3A//plotly.com/r/

        [82]

        htmlwidgets for R: https://link.zhihu.com/?target=https%3A//gallery.htmlwidgets.org/

        [83]

        R任務(wù)視圖: https://link.zhihu.com/?target=https%3A//cran.r-project.org/web/views/

        [84]

        xaringan: https://link.zhihu.com/?target=https%3A//github.com/yihui/xaringan

        [85]

        英文模板: https://link.zhihu.com/?target=https%3A//slides.yihui.org/xaringan/

        [86]

        中文模板: https://link.zhihu.com/?target=https%3A//slides.yihui.org/xaringan/zh-CN.html

        [87]

        datesets: https://link.zhihu.com/?target=https%3A//stat.ethz.ch/R-manual/R-devel/library/datasets/html/00Index.html

        [88]

        Rdatasets: https://link.zhihu.com/?target=https%3A//vincentarelbundock.github.io/Rdatasets/articles/data.html

        [89]

        R官方文檔: https://link.zhihu.com/?target=https%3A//www.r-project.org/other-docs.html

        [90]

        R貢獻(xiàn)文檔: https://link.zhihu.com/?target=https%3A//cran.r-project.org/other-docs.html

        [91]

        timeline-of-statistics.pdf: https://link.zhihu.com/?target=http%3A//www.statslife.org.uk/images/pdf/timeline-of-statistics.pdf

        [92]

        RStudio的cheatsheet: https://link.zhihu.com/?target=https%3A//www.rstudio.com/resources/cheatsheets/

        [93]

        DataCamp的cheatsheet: https://link.zhihu.com/?target=https%3A//www.datacamp.com/community/data-science-cheatsheets

        [94]

        UCB統(tǒng)計(jì)系推薦閱讀清單: https://link.zhihu.com/?target=http%3A//sgsa.berkeley.edu/current_students/books/

        [95]

        ASA的統(tǒng)計(jì)學(xué)本科課程大綱: https://link.zhihu.com/?target=http%3A//www.amstat.org/education/pdfs/guidelines2014-11-15.pdf

        [96]

        Statistical Science Conversations: https://link.zhihu.com/?target=https%3A//imstat.org/journals-and-publications/statistical-science/conversations/

        [97]

        How R Helps Airbnb Make the Most of its Data: https://link.zhihu.com/?target=https%3A//www.tandfonline.com/doi/full/10.1080/00031305.2017.1392362

        [98]

        Why Is It Called That Way?! – Origin and Meaning of R Package Names: https://link.zhihu.com/?target=https%3A//www.statworx.com/en/blog/why-is-it-called-that-way-origin-and-meaning-of-r-package-names/

        [99]

        Tidy Data: https://link.zhihu.com/?target=https%3A//vita.had.co.nz/papers/tidy-data.pdf

        推薦閱讀

        我逃到國(guó)企了

        再也不接私活了

        Kaggle出了一本競(jìng)賽書(500頁(yè))

        機(jī)器學(xué)習(xí)基礎(chǔ):用 Lasso 做特征選

        機(jī)器學(xué)習(xí)自動(dòng)補(bǔ)全代(hán)碼(shù)神器

        整理不易,點(diǎn)三連

        瀏覽 57
        點(diǎn)贊
        評(píng)論
        收藏
        分享

        手機(jī)掃一掃分享

        分享
        舉報(bào)
        評(píng)論
        圖片
        表情
        推薦
        點(diǎn)贊
        評(píng)論
        收藏
        分享

        手機(jī)掃一掃分享

        分享
        舉報(bào)
        1. <strong id="7actg"></strong>
        2. <table id="7actg"></table>

        3. <address id="7actg"></address>
          <address id="7actg"></address>
          1. <object id="7actg"><tt id="7actg"></tt></object>
            男人艹女人网站 | 国产一国产精品一级毛片视频 | 免费观看黄色三级片 | 亚洲日韩精品高潮无码久久岛国久 | 国产精品黄在线观看免费软件 | 男女啪啪动态图 | 大香蕉在线黄色 | 一级片网 | 操白嫩妹子 | 91久久爽无码人妻AⅤ精品牛牛 |