1. <strong id="7actg"></strong>
    2. <table id="7actg"></table>

    3. <address id="7actg"></address>
      <address id="7actg"></address>
      1. <object id="7actg"><tt id="7actg"></tt></object>

        機(jī)器學(xué)習(xí)各研究領(lǐng)域綜述匯總!

        共 10469字,需瀏覽 21分鐘

         ·

        2021-08-15 16:46

        ↑↑↑點(diǎn)擊上方藍(lán)字,回復(fù)資料,10個G的驚喜

        作者 | kaiyuan 整理 | NewBeeNLP


        繼續(xù)來給大家分享github上的好東西,一個『機(jī)器學(xué)習(xí)領(lǐng)域綜述大列表』,涵蓋了自然語言處理、推薦系統(tǒng)、計算機(jī)視覺、深度學(xué)習(xí)、強(qiáng)化學(xué)習(xí)等主題。

        另外發(fā)現(xiàn)源repo中NLP相關(guān)的綜述不是很多,于是把一些覺得還不錯的文章添加進(jìn)去了,重新整理更新在 AI-Surveys[1] 中。

        • ml-surveys: https://github.com/eugeneyan/ml-surveys
        • AI-Surveys: https://github.com/KaiyuanGao/AI-Surveys

        『收藏等于看完』系列,來看看都有哪些吧, enjoy!

        自然語言處理

        • 深度學(xué)習(xí):Recent Trends in Deep Learning Based Natural Language Processing[2]
        • 文本分類:Deep Learning Based Text Classification: A Comprehensive Review[3]
        • 文本生成:Survey of the SOTA in Natural Language Generation: Core tasks, applications and evaluation[4]
        • 文本生成:Neural Language Generation: Formulation, Methods, and Evaluation[5]
        • 遷移學(xué)習(xí):Exploring Transfer Learning with T5: the Text-To-Text Transfer Transformer[6](Paper[7])
        • 遷移學(xué)習(xí):Neural Transfer Learning for Natural Language Processing[8]
        • 知識圖譜:A Survey on Knowledge Graphs: Representation, Acquisition and Applications[9]
        • 命名實(shí)體識別:A Survey on Deep Learning for Named Entity Recognition[10]
        • 關(guān)系抽?。篗ore Data, More Relations, More Context and More Openness: A Review and Outlook for Relation Extraction[11]
        • 情感分析:Deep Learning for Sentiment Analysis : A Survey[12]
        • ABSA情感分析:Deep Learning for Aspect-Level Sentiment Classification: Survey, Vision, and Challenges[13]
        • 文本匹配:Neural Network Models for Paraphrase Identification, Semantic Textual Similarity, Natural Language Inference, and Question Answering[14]
        • 閱讀理解:Neural Reading Comprehension And Beyond[15]
        • 閱讀理解:Neural Machine Reading Comprehension: Methods and Trends[16]
        • 機(jī)器翻譯:Neural Machine Translation: A Review[17]
        • 機(jī)器翻譯:A Survey of Domain Adaptation for Neural Machine Translation[18]
        • 預(yù)訓(xùn)練模型:Pre-trained Models for Natural Language Processing: A Survey[19]
        • 注意力機(jī)制:An Attentive Survey of Attention Models[20]
        • 注意力機(jī)制:An Introductory Survey on Attention Mechanisms in NLP Problems[21]
        • 注意力機(jī)制:Attention in Natural Language Processing[22]
        • BERT:A Primer in BERTology: What we know about how BERT works[23]
        • Beyond Accuracy: Behavioral Testing of NLP Models with CheckList[24]
        • Evaluation of Text Generation: A Survey[25]

        推薦系統(tǒng)

        • Recommender systems survey[26]
        • Deep Learning based Recommender System: A Survey and New Perspectives[27]
        • Are We Really Making Progress? A Worrying Analysis of Neural Recommendation Approaches[28]
        • A Survey of Serendipity in Recommender Systems[29]
        • Diversity in Recommender Systems – A survey[30]
        • A Survey of Explanations in Recommender Systems[31]

        深度學(xué)習(xí)

        • A State-of-the-Art Survey on Deep Learning Theory and Architectures[32]
        • 知識蒸餾:Knowledge Distillation: A Survey[33]
        • 模型壓縮:Compression of Deep Learning Models for Text: A Survey[34]
        • 遷移學(xué)習(xí):A Survey on Deep Transfer Learning[35]
        • 神經(jīng)架構(gòu)搜索:A Comprehensive Survey of Neural Architecture Search-- Challenges and Solutions[36]
        • 神經(jīng)架構(gòu)搜索:Neural Architecture Search: A Survey[37]

        計算機(jī)視覺

        • 目標(biāo)檢測:Object Detection in 20 Years[38]
        • 對抗性攻擊:Threat of Adversarial Attacks on Deep Learning in Computer Vision[39]
        • 自動駕駛:Computer Vision for Autonomous Vehicles: Problems, Datasets and State of the Art[40]

        強(qiáng)化學(xué)習(xí)

        • A Brief Survey of Deep Reinforcement Learning[41]
        • Transfer Learning for Reinforcement Learning Domains[42]
        • Review of Deep Reinforcement Learning Methods and Applications in Economics[43]

        Embeddings

        • 圖:A Comprehensive Survey of Graph Embedding: Problems, Techniques and Applications[44]
        • 文本:From Word to Sense Embeddings:A Survey on Vector Representations of Meaning[45]
        • 文本:Diachronic Word Embeddings and Semantic Shifts[46]
        • 文本:Word Embeddings: A Survey[47]
        • A Survey on Contextual Embeddings[48]

        Meta-learning & Few-shot Learning

        • A Survey on Knowledge Graphs: Representation, Acquisition and Applications[49]
        • Meta-learning for Few-shot Natural Language Processing: A Survey[50]
        • Learning from Few Samples: A Survey[51]
        • Meta-Learning in Neural Networks: A Survey[52]
        • A Comprehensive Overview and Survey of Recent Advances in Meta-Learning[53]
        • Baby steps towards few-shot learning with multiple semantics[54]
        • Meta-Learning: A Survey[55]
        • A Perspective View And Survey Of Meta-learning[56]

        其他

        • A Survey on Transfer Learning[57]

        本文參考資料

        [1]   AI-Surveys: https://github.com/KaiyuanGao/AI-Surveys

        [2]

        Recent Trends in Deep Learning Based Natural Language Processing: https://arxiv.org/pdf/1708.02709.pdf

        [3]

        Deep Learning Based Text Classification: A Comprehensive Review: https://arxiv.org/pdf/2004.03705

        [4]

        Survey of the SOTA in Natural Language Generation: Core tasks, applications and evaluation: https://www.jair.org/index.php/jair/article/view/11173/26378

        [5]

        Neural Language Generation: Formulation, Methods, and Evaluation: https://arxiv.org/pdf/2007.15780.pdf

        [6]

        Exploring Transfer Learning with T5: the Text-To-Text Transfer Transformer: https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html

        [7]

        Paper: https://arxiv.org/abs/1910.10683

        [8]

        Neural Transfer Learning for Natural Language Processing: https://aran.library.nuigalway.ie/handle/10379/15463

        [9]

        A Survey on Knowledge Graphs: Representation, Acquisition and Applications: https://arxiv.org/abs/2002.00388

        [10]

        A Survey on Deep Learning for Named Entity Recognition: https://arxiv.org/abs/1812.09449

        [11]

        More Data, More Relations, More Context and More Openness: A Review and Outlook for Relation Extraction: https://arxiv.org/abs/2004.03186

        [12]

        Deep Learning for Sentiment Analysis : A Survey: https://arxiv.org/abs/1801.07883

        [13]

        Deep Learning for Aspect-Level Sentiment Classification: Survey, Vision, and Challenges: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8726353

        [14]

        Neural Network Models for Paraphrase Identification, Semantic Textual Similarity, Natural Language Inference, and Question Answering: https://www.aclweb.org/anthology/C18-1328/

        [15]

        Neural Reading Comprehension And Beyond: https://stacks.stanford.edu/file/druid:gd576xb1833/thesis-augmented.pdf

        [16]

        Neural Machine Reading Comprehension: Methods and Trends: https://arxiv.org/abs/1907.01118

        [17]

        Neural Machine Translation: A Review: https://arxiv.org/abs/1912.02047

        [18]

        A Survey of Domain Adaptation for Neural Machine Translation: https://www.aclweb.org/anthology/C18-1111.pdf

        [19]

        Pre-trained Models for Natural Language Processing: A Survey: https://arxiv.org/abs/2003.08271

        [20]

        An Attentive Survey of Attention Models: https://arxiv.org/pdf/1904.02874.pdf

        [21]

        An Introductory Survey on Attention Mechanisms in NLP Problems: https://arxiv.org/abs/1811.05544

        [22]

        Attention in Natural Language Processing: https://arxiv.org/abs/1902.02181

        [23]

        A Primer in BERTology: What we know about how BERT works: https://arxiv.org/pdf/2002.12327.pdf

        [24]

        Beyond Accuracy: Behavioral Testing of NLP Models with CheckList: https://arxiv.org/pdf/2005.04118.pdf

        [25]

        Evaluation of Text Generation: A Survey: https://arxiv.org/pdf/2006.14799.pdf

        [26]

        Recommender systems survey: http://irntez.ir/wp-content/uploads/2016/12/sciencedirec.pdf

        [27]

        Deep Learning based Recommender System: A Survey and New Perspectives: https://arxiv.org/pdf/1707.07435.pdf

        [28]

        Are We Really Making Progress? A Worrying Analysis of Neural Recommendation Approaches: https://arxiv.org/pdf/1907.06902.pdf

        [29]

        A Survey of Serendipity in Recommender Systems: https://www.researchgate.net/publication/306075233_A_Survey_of_Serendipity_in_Recommender_Systems

        [30]

        Diversity in Recommender Systems – A survey: https://papers-gamma.link/static/memory/pdfs/153-Kunaver_Diversity_in_Recommender_Systems_2017.pdf

        [31]

        A Survey of Explanations in Recommender Systems: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.418.9237&rep=rep1&type=pdf

        [32]

        A State-of-the-Art Survey on Deep Learning Theory and Architectures: https://www.mdpi.com/2079-9292/8/3/292/htm

        [33]

        Knowledge Distillation: A Survey: https://arxiv.org/pdf/2006.05525.pdf

        [34]

        Compression of Deep Learning Models for Text: A Survey: https://arxiv.org/pdf/2008.05221.pdf

        [35]

        A Survey on Deep Transfer Learning: https://arxiv.org/pdf/1808.01974.pdf

        [36]

        A Comprehensive Survey of Neural Architecture Search-- Challenges and Solutions: https://arxiv.org/abs/2006.02903

        [37]

        Neural Architecture Search: A Survey: https://arxiv.org/abs/1808.05377

        [38]

        Object Detection in 20 Years: https://arxiv.org/pdf/1905.05055.pdf

        [39]

        Threat of Adversarial Attacks on Deep Learning in Computer Vision: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8294186

        [40]

        Computer Vision for Autonomous Vehicles: Problems, Datasets and State of the Art: https://arxiv.org/pdf/1704.05519.pdf

        [41]

        A Brief Survey of Deep Reinforcement Learning: https://arxiv.org/pdf/1708.05866.pdf

        [42]

        Transfer Learning for Reinforcement Learning Domains: http://www.jmlr.org/papers/volume10/taylor09a/taylor09a.pdf

        [43]

        Review of Deep Reinforcement Learning Methods and Applications in Economics: https://arxiv.org/pdf/2004.01509.pdf

        [44]

        A Comprehensive Survey of Graph Embedding: Problems, Techniques and Applications: https://arxiv.org/pdf/1709.07604

        [45]

        From Word to Sense Embeddings:A Survey on Vector Representations of Meaning: https://www.jair.org/index.php/jair/article/view/11259/26454

        [46]

        Diachronic Word Embeddings and Semantic Shifts: https://arxiv.org/pdf/1806.03537.pdf

        [47]

        Word Embeddings: A Survey: https://arxiv.org/abs/1901.09069

        [48]

        A Survey on Contextual Embeddings: https://arxiv.org/abs/2003.07278

        [49]

        A Survey on Knowledge Graphs: Representation, Acquisition and Applications: https://arxiv.org/abs/2002.00388

        [50]

        Meta-learning for Few-shot Natural Language Processing: A Survey: https://arxiv.org/abs/2007.09604

        [51]

        Learning from Few Samples: A Survey: https://arxiv.org/abs/2007.15484

        [52]

        Meta-Learning in Neural Networks: A Survey: https://arxiv.org/abs/2004.05439

        [53]

        A Comprehensive Overview and Survey of Recent Advances in Meta-Learning: https://arxiv.org/abs/2004.11149

        [54]

        Baby steps towards few-shot learning with multiple semantics: https://arxiv.org/abs/1906.01905

        [55]

        Meta-Learning: A Survey: https://arxiv.org/abs/1810.03548

        [56]

        A Perspective View And Survey Of Meta-learning: https://www.researchgate.net/publication/2375370_A_Perspective_View_And_Survey_Of_Meta-Learning

        [57]

        A Survey on Transfer Learning: http://202.120.39.19:40222/wp-content/uploads/2018/03/A-Survey-on-Transfer-Learning.pdf



        推薦閱讀

        (點(diǎn)擊標(biāo)題可跳轉(zhuǎn)閱讀)

        我的深度學(xué)習(xí)之路

        測評:《機(jī)器學(xué)習(xí)中的數(shù)學(xué)》

        6行代碼!用Python將PDF轉(zhuǎn)為word

        Yahoo的這個騷操作令人費(fèi)解。。。

        Tensorflow是系統(tǒng)派,Pytorch是算法派

        老鐵,三連支持一下,好嗎?↓↓↓

        瀏覽 44
        點(diǎn)贊
        評論
        收藏
        分享

        手機(jī)掃一掃分享

        分享
        舉報
        評論
        圖片
        表情
        推薦
        點(diǎn)贊
        評論
        收藏
        分享

        手機(jī)掃一掃分享

        分享
        舉報
        1. <strong id="7actg"></strong>
        2. <table id="7actg"></table>

        3. <address id="7actg"></address>
          <address id="7actg"></address>
          1. <object id="7actg"><tt id="7actg"></tt></object>
            伊人成色 | 镜脸红享受流眼泪表情 | 国产草逼网站 | 男女激情上床 | 色哟哟无码精品一区二区三区 | 一级a性色生活片久久毛片 | av美女在线播放 kkoo性生交大片免费看 2021毛片 | 丁香导航 | 色综合狠狠爱 | 久久噜噜噜精品国产亚洲综合 |