Python實(shí)現(xiàn)圖像的全景拼接

基本介紹
具體步驟
代碼:
import cv2 as cv # 導(dǎo)入opencv包import numpy as np # 導(dǎo)入numpy包,圖像處理中的矩陣運(yùn)算需要用到# 檢測(cè)圖像的SIFT關(guān)鍵特征點(diǎn)def sift_keypoints_detect(image):# 處理圖像一般很少用到彩色信息,通常直接將圖像轉(zhuǎn)換為灰度圖gray_image = cv.cvtColor(image, cv.COLOR_BGR2GRAY)# 獲取圖像特征sift-SIFT特征點(diǎn),實(shí)例化對(duì)象siftsift = cv.xfeatures2d.SIFT_create()# keypoints:特征點(diǎn)向量,向量?jī)?nèi)的每一個(gè)元素是一個(gè)KeyPoint對(duì)象,包含了特征點(diǎn)的各種屬性信息(角度、關(guān)鍵特征點(diǎn)坐標(biāo)等)# features:表示輸出的sift特征向量,通常是128維的keypoints, features = sift.detectAndCompute(image, None)# cv.drawKeyPoints():在圖像的關(guān)鍵特征點(diǎn)部位繪制一個(gè)小圓圈# 如果傳遞標(biāo)志flags=cv.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS,它將繪制一個(gè)大小為keypoint的圓圈并顯示它的方向# 這種方法同時(shí)顯示圖像的坐標(biāo),大小和方向,是最能顯示特征的一種繪制方式keypoints_image = cv.drawKeypoints(gray_image, keypoints, None, flags=cv.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS)# 返回帶關(guān)鍵特征點(diǎn)的圖像、關(guān)鍵特征點(diǎn)和sift的特征向量return keypoints_image, keypoints, features# 使用KNN檢測(cè)來(lái)自左右圖像的SIFT特征,隨后進(jìn)行匹配def get_feature_point_ensemble(features_right, features_left):# 創(chuàng)建BFMatcher對(duì)象解決匹配bf = cv.BFMatcher()# knnMatch()函數(shù):返回每個(gè)特征點(diǎn)的最佳匹配k個(gè)匹配點(diǎn)# features_right為模板圖,features_left為匹配圖matches = bf.knnMatch(features_right, features_left, k=2)# 利用sorted()函數(shù)對(duì)matches對(duì)象進(jìn)行升序(默認(rèn))操作matches = sorted(matches, key=lambda x: x[0].distance / x[1].distance)# x:x[]字母可以隨意修改,排序方式按照中括號(hào)[]里面的維度進(jìn)行排序,[0]按照第一維排序,[2]按照第三維排序# 建立列表good用于存儲(chǔ)匹配的點(diǎn)集good = []for m, n in matches:# ratio的值越大,匹配的線條越密集,但錯(cuò)誤匹配點(diǎn)也會(huì)增多ratio = 0.6if m.distance < ratio * n.distance:good.append(m)# 返回匹配的關(guān)鍵特征點(diǎn)集return good# 計(jì)算視角變換矩陣H,用H對(duì)右圖進(jìn)行變換并返回全景拼接圖像def Panorama_stitching(image_right, image_left):_, keypoints_right, features_right = sift_keypoints_detect(image_right)_, keypoints_left, features_left = sift_keypoints_detect(image_left)goodMatch = get_feature_point_ensemble(features_right, features_left)# 當(dāng)篩選項(xiàng)的匹配對(duì)大于4對(duì)(因?yàn)閔omography單應(yīng)性矩陣的計(jì)算需要至少四個(gè)點(diǎn))時(shí),計(jì)算視角變換矩陣if len(goodMatch) > 4:# 獲取匹配對(duì)的點(diǎn)坐標(biāo)ptsR = np.float32([keypoints_right[m.queryIdx].pt for m in goodMatch]).reshape(-1, 1, 2)ptsL = np.float32([keypoints_left[m.trainIdx].pt for m in goodMatch]).reshape(-1, 1, 2)# ransacReprojThreshold:將點(diǎn)對(duì)視為內(nèi)點(diǎn)的最大允許重投影錯(cuò)誤閾值(僅用于RANSAC和RHO方法時(shí)),若srcPoints和dstPoints是以像素為單位的,該參數(shù)通常設(shè)置在1到10的范圍內(nèi)ransacReprojThreshold = 4# cv.findHomography():計(jì)算多個(gè)二維點(diǎn)對(duì)之間的最優(yōu)單映射變換矩陣 H(3行x3列),使用最小均方誤差或者RANSAC方法# 函數(shù)作用:利用基于RANSAC的魯棒算法選擇最優(yōu)的四組配對(duì)點(diǎn),再計(jì)算轉(zhuǎn)換矩陣H(3*3)并返回,以便于反向投影錯(cuò)誤率達(dá)到最小Homography, status = cv.findHomography(ptsR, ptsL, cv.RANSAC, ransacReprojThreshold)# cv.warpPerspective():透視變換函數(shù),用于解決cv2.warpAffine()不能處理視場(chǎng)和圖像不平行的問(wèn)題# 作用:就是對(duì)圖像進(jìn)行透視變換,可保持直線不變形,但是平行線可能不再平行Panorama = cv.warpPerspective(image_right, Homography, (image_right.shape[1] + image_left.shape[1], image_right.shape[0]))cv.imshow("扭曲變換后的右圖", Panorama)cv.waitKey(0)cv.destroyAllWindows()# 將左圖加入到變換后的右圖像的左端即獲得最終圖像Panorama[0:image_left.shape[0], 0:image_left.shape[1]] = image_left# 返回全景拼接的圖像return Panoramaif __name__ == '__main__':# 讀取需要拼接的圖像,需要注意圖像左右的順序image_left = cv.imread("./Left.jpg")image_right = cv.imread("./Right.jpg")# 通過(guò)調(diào)用cv2.resize()使用插值的方式來(lái)改變圖像的尺寸,保證左右兩張圖像大小一致# cv.resize()函數(shù)中的第二個(gè)形參dsize表示輸出圖像大小尺寸,當(dāng)設(shè)置為0(None)時(shí),則表示按fx與fy與原始圖像大小相乘得到輸出圖像尺寸大小image_right = cv.resize(image_right, None, fx=0.4, fy=0.24)image_left = cv.resize(image_left, (image_right.shape[1], image_right.shape[0]))# 獲取檢測(cè)到關(guān)鍵特征點(diǎn)后的圖像的相關(guān)參數(shù)keypoints_image_right, keypoints_right, features_right = sift_keypoints_detect(image_right)keypoints_image_left, keypoints_left, features_left = sift_keypoints_detect(image_left)# 利用np.hstack()函數(shù)同時(shí)將原圖和繪有關(guān)鍵特征點(diǎn)的圖像沿著豎直方向(水平順序)堆疊起來(lái)cv.imshow("左圖關(guān)鍵特征點(diǎn)檢測(cè)", np.hstack((image_left, keypoints_image_left)))# 一般在imshow后設(shè)置 waitKey(0) , 代表按任意鍵繼續(xù)cv.waitKey(0)# 刪除先前建立的窗口cv.destroyAllWindows()cv.imshow("右圖關(guān)鍵特征點(diǎn)檢測(cè)", np.hstack((image_right, keypoints_image_right)))cv.waitKey(0)cv.destroyAllWindows()goodMatch = get_feature_point_ensemble(features_right, features_left)# cv.drawMatches():在提取兩幅圖像特征之后,畫(huà)出匹配點(diǎn)對(duì)連線# matchColor – 匹配的顏色(特征點(diǎn)和連線),若matchColor==Scalar::all(-1),顏色隨機(jī)all_goodmatch_image = cv.drawMatches(image_right, keypoints_right, image_left, keypoints_left, goodMatch, None, None, None, None, flags=2)cv.imshow("所有匹配的SIFT關(guān)鍵特征點(diǎn)連線", all_goodmatch_image)cv.waitKey(0)cv.destroyAllWindows()# 把圖片拼接成全景圖并保存Panorama = Panorama_stitching(image_right, image_left)cv.namedWindow("全景圖", cv.WINDOW_AUTOSIZE)cv.imshow("全景圖", Panorama)cv.imwrite("./全景圖.jpg", Panorama)cv.waitKey(0)????cv.destroyAllWindows()
左圖關(guān)鍵特征點(diǎn)檢測(cè)?
右圖關(guān)鍵特征點(diǎn)檢測(cè)
所有匹配的SIFT關(guān)鍵特征點(diǎn)連線
扭曲變換后的右圖
全景圖
(版權(quán)歸原作者所有,侵刪)

評(píng)論
圖片
表情
