1. <strong id="7actg"></strong>
    2. <table id="7actg"></table>

    3. <address id="7actg"></address>
      <address id="7actg"></address>
      1. <object id="7actg"><tt id="7actg"></tt></object>

        如何解決工業(yè)缺陷檢測小樣本問題

        共 3517字,需瀏覽 8分鐘

         ·

        2022-03-02 15:57


        前言?本文介紹了從算法路徑解決小樣本問題的兩種基本的思路,第一種是增加樣本,第二種是減少算法對樣本的依賴。

        來源:act 工業(yè)AI

        轉(zhuǎn)載自新機(jī)器視覺

        吳雨培/文? 阿丘(Aqrose)科技公司算法總監(jiān)


        在工業(yè)生產(chǎn)制造中,由于生產(chǎn)過程是一個(gè)多因素耦合的復(fù)雜過程,生產(chǎn)過程中的任何異常都會導(dǎo)致產(chǎn)品缺陷產(chǎn)生,及時(shí)識別異常產(chǎn)品的缺陷模式是提高生產(chǎn)質(zhì)量和生產(chǎn)效率的有效途徑,所以缺陷檢測具有十分重要的研究意義。


        早期的產(chǎn)品缺陷模式識別主要是通過機(jī)器學(xué)習(xí)方法進(jìn)行的,如支持向量機(jī)、反向傳播網(wǎng)絡(luò)等。這些方法與用肉眼直接對產(chǎn)品缺陷進(jìn)行識別相比,大大降低了工作量。但是這些早期方法存在以下不足:識別準(zhǔn)確率低且需要大量的標(biāo)簽數(shù)據(jù)對模型進(jìn)行訓(xùn)練。近年來隨著深度學(xué)習(xí)的發(fā)展,大量基于卷積神經(jīng)網(wǎng)絡(luò)的算法在視覺任務(wù)中大放異彩。由于卷積神經(jīng)網(wǎng)絡(luò)具有非常強(qiáng)大的特征提取能力,卷積神經(jīng)網(wǎng)絡(luò)在缺陷檢測任務(wù)中得到了廣泛的應(yīng)用。


        與傳統(tǒng)的機(jī)器學(xué)習(xí)方法相比,基于卷積神經(jīng)網(wǎng)絡(luò)的深度學(xué)習(xí)方法在缺陷識別領(lǐng)域具有更高的識別準(zhǔn)確率和工作效率。但是這種方法和機(jī)器學(xué)習(xí)方法具有同樣的缺點(diǎn),首先是模型訓(xùn)練需要大量的標(biāo)簽數(shù)據(jù),而具有缺陷模式標(biāo)簽的圖像是不容易獲取的,因?yàn)楂@取帶有產(chǎn)品缺陷模式標(biāo)簽的圖像需要人工監(jiān)督,即需要大量有經(jīng)驗(yàn)的專業(yè)人員進(jìn)行人工標(biāo)注,這是非常昂貴且耗時(shí)的。


        此外在某些高度自動化的生產(chǎn)場景中,產(chǎn)品的良率特別高,收集缺陷樣本非常耗時(shí),而當(dāng)前的用于缺陷檢測的深度學(xué)習(xí)方法大多是基于大量缺陷樣本建立模型,缺陷樣本的缺乏導(dǎo)致模型難以上線。針對某些行業(yè)比如汽車行業(yè)的多型號小批量生產(chǎn)場景(每種型號產(chǎn)品只生產(chǎn)幾天),在完成缺陷樣本收集前某種型號產(chǎn)品已經(jīng)不再生產(chǎn)了,這種場景下大量的缺陷樣本收集是不可能的。此外,由于缺陷是由生產(chǎn)過程中的非受控因素產(chǎn)生的,缺陷的形態(tài)是多種多樣的,各種形態(tài)的樣本很難收集完整,這也限制了深度學(xué)習(xí)在工業(yè)檢測領(lǐng)域的應(yīng)用。


        01

        小樣本檢測算法


        為了拓展深度學(xué)習(xí)在工業(yè)檢測領(lǐng)域的應(yīng)用范圍及提升易用性,小樣本檢測算法的研究成為必然。


        解決工業(yè)檢測小樣本問題有兩種路徑,第一種是工程路徑,第二種是算法路徑。其中工程路徑常見有兩種方法,第一種是基于真實(shí)產(chǎn)品手動制造缺陷,第二種是基于真實(shí)圖像手動仿真缺陷。


        這兩種方法的優(yōu)勢在于操作簡單,產(chǎn)生的缺陷也與真實(shí)缺陷比較接近,但劣勢也比較明顯?;谡鎸?shí)產(chǎn)品手動制造缺陷會對產(chǎn)品造成不可逆的破壞,對于高價(jià)值產(chǎn)品破壞成本較高,而且,因?yàn)槿毕菥煞鞘芸匾蛩禺a(chǎn)生,手動制造的缺陷不一定與實(shí)際缺陷情況完成吻合,會存在一些差異。而基于圖像手動仿真缺陷則存在對操作人員要求高,產(chǎn)生速度慢的問題。


        因此,使用工程路徑解決小樣本問題可以在一些比較緊急的情況下使用,比如項(xiàng)目初期需要緊急上線時(shí)。


        02

        算法路徑基本思路


        從算法路徑解決小樣本問題,基本的思路有兩種,第一種是增加樣本,第二種是減少算法對樣本的依賴。


        1、增加樣本


        基于第一種思路的算法研究方向有數(shù)據(jù)增廣和缺陷生成,其中數(shù)據(jù)增廣在深度網(wǎng)絡(luò)訓(xùn)練時(shí)為了防止過擬合已成為一個(gè)標(biāo)準(zhǔn)手段,站在工業(yè)檢測的視角上看,數(shù)據(jù)增廣是一種性價(jià)比比較高的擴(kuò)增樣本的手段,但因?yàn)槟壳皵?shù)據(jù)增廣的方法大多是基于一些傳統(tǒng)圖像處理方法,所以能仿真缺陷的位置和一些簡單紋理變化,但無法仿真缺陷的形狀和復(fù)雜紋理,所以數(shù)據(jù)增廣一般作為一個(gè)基礎(chǔ)手段,可以解決一部分小樣本問題,對于一些簡單場景是有幫助的。而要解決更復(fù)雜場景的樣本生成問題,需要用缺陷生成算法。


        我們將缺陷生成算法的研究分為三個(gè)階段:第一階段是單一產(chǎn)品單一型號缺陷生成;第二階段是單一產(chǎn)品多型號缺陷生成;第三階段是實(shí)現(xiàn)跨產(chǎn)品缺陷的生成。


        當(dāng)前缺陷生成算法大致可以分為兩種:一種是自動生成算法,整個(gè)生成過程完全不需要人工干預(yù),第二種是半自動生成算法,需要一些簡單的人工交互。


        自動生成算法的典型算法有DCGAN[1] 、WGAN[2] ,輸入一張缺陷圖像可以直接生成多張真實(shí)的缺陷圖像。半自動生成算法的典型算法有CGAN[3] 、CVAE[4] 、Pix2Pix[5] ,需要人工交互給定缺陷生成的類別或形狀,然后根據(jù)給定信息生成指定類型缺陷。但當(dāng)前無論是自動生成算法還是半自動生成算法,對訓(xùn)練樣本的需求量雖然比監(jiān)督算法少,但還是有一定要求,而且目前還沒有一種能在所有數(shù)據(jù)上通用的解決方案,當(dāng)前仍需要針對不同的場景制定不同算法版本。通用的缺陷生成算法會這個(gè)研究方向下一步的重點(diǎn)。



        2、減少算法對樣本的依賴


        算法路徑解決小樣本問題的第二個(gè)思路是減少算法對樣本的依賴,基于這個(gè)思路衍生出兩條算法路線:


        • 第一條路線是完全不需要缺陷樣本的非監(jiān)督學(xué)習(xí)算法,基于非監(jiān)督算法訓(xùn)練模型時(shí)僅需要OK圖像參與訓(xùn)練即可。


        • 第二條路線仍基于有監(jiān)督算法,對缺陷樣本的需求量大大降低。


        非監(jiān)督算法實(shí)現(xiàn)的思路大體上分為兩種:


        • 一種是基于生成模型,基本思路是訓(xùn)練一個(gè)只能生成OK圖像的生成網(wǎng)絡(luò),推理時(shí)針對輸入的NG圖像,找到一個(gè)與NG圖像最接近的OK圖像,然后求兩張圖的差異,根據(jù)差異大小判斷是否為NG,典型算法有AE,VAE[6] ,Ano-GAN[7] 等。


        • 另一種思路是基于特征表示,基本思路是找個(gè)一個(gè)較好的特征表示,將OK圖和NG圖分別映射到高維特征空間,OK圖對應(yīng)特征點(diǎn)的類內(nèi)距離很小,推理時(shí)一張圖對應(yīng)特征點(diǎn)與OK圖特征簇的中心距離很遠(yuǎn)就可以判定為NG,典型算法有SVDD[8] 、OCSVM、DeepSVDD[9] 等。


        基于有監(jiān)督算法減少樣本依賴的思路分為兩種:
        • 一種是對輸入數(shù)據(jù)進(jìn)行歸一化,降低不同缺陷樣本之間的差異,歸一化算法基于傳統(tǒng)圖像處理算法實(shí)現(xiàn),需要針對不同場景做不同的算法設(shè)計(jì),很難有通用性,因此僅作為一些臨時(shí)處理手段。


        • 另一種思路是基于遷移學(xué)習(xí),典型的算法研發(fā)方向是域適應(yīng)(Domain Adaption,DA)和域泛化(Domain Generation,DG)。


        DA處理的問題要求可以獲取一部分目標(biāo)域的圖像,且不能實(shí)現(xiàn)跨類別的遷移,因此適合用于處理跨產(chǎn)品型號的問題。DG在DA的基礎(chǔ)上,放寬了對目標(biāo)域數(shù)據(jù)的要求,可以不需要目標(biāo)域數(shù)據(jù),且可以實(shí)現(xiàn)跨類別遷移,因此可以實(shí)現(xiàn)跨產(chǎn)品、跨型號、跨缺陷類別的遷移。


        DA算法當(dāng)前研究的基本思路有三種,一是基于差異度量,核心思路是找一個(gè)差異度量函數(shù),讓源域與目標(biāo)域樣本的特征在這個(gè)度量函數(shù)下最小,代表算法為MMD[10] ;二是基于對抗,核心思路是通過構(gòu)造對抗網(wǎng)絡(luò),訓(xùn)練一個(gè)分類器讓判別器無法區(qū)分?jǐn)?shù)據(jù)是來自源域還是目標(biāo)域,這樣就實(shí)現(xiàn)了源域和目標(biāo)域的融合,代表算法為Dom Confusion[11] ;三是基于重構(gòu),核心思路是將構(gòu)造源域和目標(biāo)域的通用特征,僅利用通用特征去執(zhí)行相應(yīng)的任務(wù),代表算法為Domain Separation Networks[12] 。


        DG算法當(dāng)前的研究思路也分為三種,第一種是推理時(shí)選取一個(gè)分布最近的源域的模型直接使用,第二種是通過拆解域相關(guān)與域無關(guān)的組件并進(jìn)行組合來實(shí)現(xiàn)對目標(biāo)域數(shù)據(jù)的處理,第三種是訓(xùn)練得到域不變的特征[13] 。


        03

        總結(jié)


        當(dāng)前基于有監(jiān)督的缺陷檢測算法,在數(shù)據(jù)量充足的場景下已經(jīng)逐步成功落地,但工業(yè)場景具有一定的離散性,大部分應(yīng)用場景均為小樣本檢測場景,小樣本問題的解決有助于將AI技術(shù)應(yīng)用于千千萬萬工廠。


        雖然當(dāng)前針對小樣本問題有一些初步的解決思路,但該問題的徹底解決需要更深入的研究及更大的投入。阿丘科技將AI For Every Factory作為使命,會堅(jiān)定不移地持續(xù)研究小樣本問題,也希望可以和有志于研究工業(yè)AI檢測問題的工業(yè)人一起交流進(jìn)步,推動小樣本問題的徹底解決。




        若覺得還不錯(cuò)的話,請點(diǎn)個(gè) “贊” 或 “在看” 吧

        ----版權(quán)聲明----

        僅用于學(xué)術(shù)分享,若侵權(quán)請聯(lián)系刪除


        猜您喜歡:

        ?戳我,查看GAN的系列專輯~!

        一頓午飯外賣,成為CV視覺的前沿弄潮兒!

        超110篇!CVPR 2021最全GAN論文匯總梳理!

        超100篇!CVPR 2020最全GAN論文梳理匯總!

        拆解組新的GAN:解耦表征MixNMatch

        StarGAN第2版:多域多樣性圖像生成


        附下載 |?《可解釋的機(jī)器學(xué)習(xí)》中文版

        附下載 |《TensorFlow 2.0 深度學(xué)習(xí)算法實(shí)戰(zhàn)》

        附下載 |《計(jì)算機(jī)視覺中的數(shù)學(xué)方法》分享


        《基于深度學(xué)習(xí)的表面缺陷檢測方法綜述》

        《零樣本圖像分類綜述: 十年進(jìn)展》

        《基于深度神經(jīng)網(wǎng)絡(luò)的少樣本學(xué)習(xí)綜述》



        瀏覽 73
        點(diǎn)贊
        評論
        收藏
        分享

        手機(jī)掃一掃分享

        分享
        舉報(bào)
        評論
        圖片
        表情
        推薦
        點(diǎn)贊
        評論
        收藏
        分享

        手機(jī)掃一掃分享

        分享
        舉報(bào)
        1. <strong id="7actg"></strong>
        2. <table id="7actg"></table>

        3. <address id="7actg"></address>
          <address id="7actg"></address>
          1. <object id="7actg"><tt id="7actg"></tt></object>
            摸了女同学的下面毛** | 乳奴极度催乳电影bd | 日本爽爽爽爽爽爽在线观看免 | 黄色骚逼 | 91 黄网站在线观看 | 少妇被粗大| www.av天堂.com | 日本苍井空高潮无码a | 粉嫩av无码一区二区三区免费大全 | 成人国产在线 |