志卷第二十八 宋史七十五
共 15164字,需瀏覽 31分鐘
·
2024-02-06 06:08
志卷第二十八 宋史七十五
開(kāi)府儀同三司上柱國(guó)錄軍國(guó)重事前中書(shū)右丞相監(jiān)修國(guó)史領(lǐng)經(jīng)筵事都總裁臣脫脫等奉勑修
律歷八
明天歷
步晷漏術(shù)
二至限一百八十二日六十二分。一象度九十一度三十一分。消息法一萬(wàn)六百八十九辰法三千二百五十??谭ㄈ倬攀?。半辰法:一千六百二十五。
昏明刻分:九百七十五。
昏明:二刻一百九十五分。
冬至岳臺(tái)晷景常數(shù):一丈二尺八寸五分。夏至岳臺(tái)晷景常數(shù):一尺五寸七分。冬至后初限夏至后末限:四十五日六十二分。夏至后初限、冬至后末限:一百三十七日。求岳臺(tái)晷景入二至后日數(shù):計(jì)入二至后來(lái)日數(shù),以二至約余減之,仍加半日之分,即為入二至后來(lái)日午中積數(shù)及分。求岳臺(tái)晷景午中定數(shù):置所求午中積數(shù),如初限以下者為在初;已上者,覆減二至限,余為在末。其在冬至后初限、夏至后末限者,以入限日減一千九百三十七半,為泛差;仍以入限日分乗其日盈縮積,盈縮積在日度術(shù)中。五因百約之,用減泛差,為定差;乃以入限日分自相乘,以乘定差,滿(mǎn)一百萬(wàn)為尺,不滿(mǎn)為寸、為分及小分,以減冬至常晷,余為其日午中晷景定數(shù)。若所求入冬至后末限、夏至后初限者,乃三約入限日分,以減四百八十五少,余為泛差;仍以盈縮差減極數(shù),余者若在春分后、秋分前者,直以四約之,以加泛差,為定差;若春分前、秋分后者,以去二分日數(shù)及分乘之,滿(mǎn)六百而一,以減泛差,余為定差;乃以入限日分自相乗,以乗定差,滿(mǎn)一百萬(wàn)為尺,不滿(mǎn)為寸、為分及小分,以加夏至常晷,即為其日午中晷景定數(shù)。求每日消息定數(shù):置所求日中日度分,如在二至限以下者為在息;以上者去之,余為在消。又視入消息度加一象以下者為在初;以上者,覆減二至限,余為在末。其初、末度自相乗,以一萬(wàn)乗而再折之,滿(mǎn)消息法除之,為常數(shù),乃副之;用減一千九百五十,余以乗其副,滿(mǎn)八千六百五十除之,所得,以加常數(shù),為所求消息定數(shù)。求每日黃道去極度及赤道內(nèi)外度:置其日消息定數(shù),以四因之,滿(mǎn)三百二十五除之為度,不滿(mǎn),退除為分,所得,在春分后加六十七度三十一分,在秋分后減一百一十五度三十一分,即為所求日黃道去極度及分。以黃道去極度與一象度相減,余為赤道內(nèi)外度。若去極度少,為日在赤道內(nèi);若去極度多,為日在赤道外。求每日晨昏分及日出入分:以其日消息定數(shù),春分后加六千八百二十五,秋分后減一萬(wàn)七百二十五,余為所求日晨分;用減元法,余為昏分。以昏明分加晨分,為日出分;減昏分,為日入分。求每日距中距子度及每更差度:置其日晨分,以七百乗之,滿(mǎn)七萬(wàn)四千七百四十二除為度,不滿(mǎn),退除為分,命曰距子度;用減半周天,余為距中度;若倍距子度,五除之,即為每更差度及分。若依司辰星漏歷,則倍距子度,減去待旦三十六度五十二分半,余以五約之,即每更差度。求每日夜半定漏:置其日晨分,以刻法除之為刻,不滿(mǎn)為分,即所求日夜半定漏。求每日晝夜刻及日出入辰刻:倍夜半定漏,加五刻,為夜刻;用減一百刻,余為晝刻;以昏明刻加夜半定漏,滿(mǎn)辰法除之為辰數(shù),不滿(mǎn),刻法除之為刻,又不滿(mǎn),為刻分。命辰數(shù)從子正,筭外,即日出辰刻;以晝刻加之,命如前,即日入辰刻。若以半辰刻加之,即命從辰初也。求更點(diǎn)辰刻:倍夜半定漏,二十五而一,為點(diǎn)差刻;五因之,為更差刻。以昏明刻加日入辰刻,即甲夜辰刻;以更點(diǎn)差刻累加之,滿(mǎn)辰刻及分去之,各得更點(diǎn)所入辰刻及分。若同司辰星漏歷者,倍夜半定漏,減去待旦一十刻,余依術(shù)求之,即同內(nèi)中更點(diǎn)。求昏曉及五更中星:置距中度,以其日昏后夜半赤道日度加而命之,即其日昏中星所格宿次。其昏中星便為初更中星;以每更差度加而命之,即乙夜所格中星;累加之,得逐更中星所格宿次。又倍距子度,加昏中星命之,即曉中星所格宿次。若同司辰星漏歷中星,則倍距子度,減去待旦十刻之度三十六度五十二分半,余約之為五更,即同內(nèi)中更點(diǎn)中星。求九服距差日:各于所在立表候之,若地在岳臺(tái)北,測(cè)冬至后與岳臺(tái)冬至晷景同者,累冬至后至其日,為距差日;若地在岳臺(tái)南,測(cè)夏至后與岳臺(tái)晷景同者,累夏至后至其日,為距差日。求九服晷景:若地在岳臺(tái)北冬至前后者,以冬至前后日數(shù)減距差日,為余日;以余日減一千九百三十七半,為泛差;依前術(shù)求之,以加岳臺(tái)冬至晷景常數(shù),為其地其日中晷常數(shù)。若冬至前后日多于距差日,乃減去距差日,余依前術(shù)求之,即得其地其日中晷常數(shù)。若地在岳臺(tái)南夏至前后者,以夏至前后日數(shù)減距差日,為余日;乃三約之,以減四百八十五少,為泛差;依前術(shù)求之,以減岳臺(tái)夏至晷景常數(shù),即其地其日中晷常數(shù)。如夏至前后日數(shù)多于距差日,及減岳臺(tái)夏至常晷,余即晷在表南也。若夏至前后日多于距差日,即減去距差日,余依前術(shù)求之,各得其地其日中晷常數(shù)。若求定數(shù),依立成以求午中晷景定數(shù)。求九服所在晝夜漏刻:冬、夏二至各于所在下水漏,以定其地二至夜刻,乃相減,余為冬、夏至差刻。置岳臺(tái)其日消息定數(shù),以其地二至差刻乗之,如岳臺(tái)二至差刻二十而一,所得,為其地其日消息定數(shù)。乃倍消息定數(shù),滿(mǎn)刻法約之為刻,不滿(mǎn)為分。乃加減其地二至夜刻,秋分后、春分前,減冬至夜刻;春分后、秋分前,加夏至夜刻。為其地其日夜刻;用減一百刻,余為晝刻。其日出入辰刻及距中度五更中星,并依前術(shù)求之。步月離術(shù)
轉(zhuǎn)度母:八千一百一十二萬(wàn)。
轉(zhuǎn)終分:二百九十八億八千二百二十四萬(wàn)二千二百五十一。朔差:二十一億四千二百八十八萬(wàn)七千。朔差:二十六度。余三千三百七十六萬(wàn)七千;約余四千一百六十二半。轉(zhuǎn)法:一十億八千四百四十七萬(wàn)三千。會(huì)周:三百二十億二千五百一十二萬(wàn)九千二百五十一。轉(zhuǎn)終:三百六十八度。余三十八萬(wàn)二千二百五十一;約余三千七百八。轉(zhuǎn)終:二十七日。余六億一百四十七萬(wàn)一千二百五十一,約余五千五百四十六。中度:一百八十四度。余一千五百四萬(wàn)一千一百二十五半,約余一千八百五十四。象度:九十二度。余七百五十二萬(wàn)五百六十二太,約分九百二十七。月平行:十三度。余二千九百九十一萬(wàn)三千,約分三千六百八十七半。朢差:一百九十七度。余三千一百九十二萬(wàn)四千六百二十五半,約分三千九百三十四。弦差:九十八度。余五千六百五十二萬(wàn)二千三百一十二太,約分六千九百六十七。日衰:一十八。小分九。
求月行入轉(zhuǎn)度:以朔差乗所求積月,滿(mǎn)轉(zhuǎn)終分去之,不盡為轉(zhuǎn)余;滿(mǎn)轉(zhuǎn)度母除為度,不滿(mǎn)為余。其余若以一萬(wàn)乗之,滿(mǎn)轉(zhuǎn)度母除之,即得約分。若以轉(zhuǎn)法除轉(zhuǎn)余,即為入轉(zhuǎn)日及余。即得所求月加時(shí)入轉(zhuǎn)度及余。若以弦度及余累加之,即得上弦、朢、下弦及后朔加時(shí)入轉(zhuǎn)度及分。其度若滿(mǎn)轉(zhuǎn)終度及余去之,其入轉(zhuǎn)度如在中度以下為月行在疾歷;如在中度以上者,乃減去中度及余,為月入遲歷。求月行遲疾差度及定差:置所求月行入遲速度,如在象度以下為在初;以上,覆減中度,余為在末。其度余用約分百為母,置初、末度于上,列二百一度九分于下,以上減下,余以下乗上,為積數(shù),滿(mǎn)一千九百七十六除為度,不滿(mǎn),退除為分,命曰遲疾差度;在疾為減,在遲為加。以一萬(wàn)乗積數(shù),滿(mǎn)六千七百七十三半除之,為遲疾定差。疾加遲減,若用立成者,以其度下?lián)p益率乗度余,滿(mǎn)轉(zhuǎn)度母而一,所得隨其損益,即得遲疾及定差。其遲疾初末損益分為二日者,各加其初、末以乗除。求朔弦朢所直度下月行定分:置遲疾所入初、末度分,進(jìn)一位,滿(mǎn)七百三十九除之,用減一百二十七,余為衰差;乃以衰差疾初遲末減、遲初疾末加,皆加減平行度分,為其度所直月行定分。其度以百命為分。求朔弦朢定日:各以日躔盈縮、月行遲疾定差加減經(jīng)朔、弦朢小余,滿(mǎn)若不足,進(jìn)退大余,命甲子筭外,各得定日日辰及余。若定朔干名與后朔干名同者月大;不同月小。月內(nèi)無(wú)中氣者為閏月。凡注歷,觀(guān)定朔小余,秋分后四分之三已上者,進(jìn)一日;若春分后,其定朔晨分差如春分之日者,三約之,以減四分之三;如定朔小余及此數(shù)已上者,進(jìn)一日。朔或當(dāng)交有食,初虧在日入已前者,其朔不進(jìn)。弦、朢定小余不滿(mǎn)日出分者,退一日;其望或當(dāng)交有食,初虧在日出已前,其定朢小余雖滿(mǎn)日出分者,亦退之。又月行九道遲疾,歷有三大二??;日行盈縮累增損之,則有四大三小,理數(shù)然也。若循其常,則當(dāng)察加時(shí)早晚,隨其所近而進(jìn)退之,使月之大小不過(guò)連三。舊說(shuō)正月朔有交,必須消息前后一兩月,移食在晦、二之日。且日食當(dāng)朔,月食當(dāng)朢,蓋自然之理。夫日之食,蓋天之垂誡,警悟時(shí)政,若道化得中,則變咎為祥。國(guó)家務(wù)以至公理天下,不可私移晦朔,宜順天誡。故春秋傳書(shū)日食,乃糺正其朔,不可專(zhuān)移食于晦、二。其正月朔有交,一從近典,不可移避。求定朔弦朢加時(shí)日度:置朔、弦、朢中日及約分,以日躔盈縮度及分盈加縮減之,又以元法退除遲疾定差,疾加遲減之,余為其朔、弦、朢加時(shí)定日。以天正冬至加時(shí)黃道日度加而命之,即所求朔、弦、朢加時(shí)定日所在宿次。朔、朢有交,則依后術(shù)。求月行九道:凡合朔所交,冬在隂歷,夏在陽(yáng)歷,月行青道。冬至、夏至后,青道半交在春分之宿,當(dāng)黃道東。立夏、立冬后,青道半交在立春之宿,當(dāng)黃道東南。至所沖之宿亦如之。冬在陽(yáng)歷,夏在隂歷,月行白道。冬至、夏至后,白道半交在秋分之宿,當(dāng)黃道西。立冬、立夏后,白道半交在立秋之宿,當(dāng)黃道西北。至所沖之宿亦如之。春在陽(yáng)歷,秋在隂歷,月行朱道。春分、秋分后,朱道半交在夏至之宿,當(dāng)黃道南。立春、立秋后,朱道半交在立夏之宿,當(dāng)黃道西南。至所沖之宿亦如之。春在隂歷,秋在陽(yáng)歷,月行黑道。春分、秋分后,黑道半交在冬至之宿,當(dāng)黃道正北。立春、立秋后,黑道半交在立冬之宿,當(dāng)黃道東北。至所沖之宿亦如之。四序離為八節(jié),至隂陽(yáng)之所交,皆與黃道相會(huì),故月行九道,各視月所入正交積度,視正交九道宿度所入節(jié)候,即其道其節(jié)所起。滿(mǎn)象度及分去之,余者入交積度及象度并在交會(huì)術(shù)中。若在半象以下為在初限;以上,覆減象度及分,為在末限。用減一百一十一度三十七分,余以所入初末限度及分乘之,退位,半之,滿(mǎn)百為度,不滿(mǎn)為分,所得,為月行與黃道差數(shù)。距半交后,正交前,以差數(shù)減;距正交后,半交前,以差數(shù)加。此加減出入六度,單與黃道相較之?dāng)?shù),若較之赤道,隨數(shù)遷變不常。計(jì)去二至以來(lái)度數(shù),乗黃道所差,九十而一,為月行與黃道差數(shù)。凡日以赤道內(nèi)為隂,外為陽(yáng);月以黃道內(nèi)為隂,外為陽(yáng)。故月行宿度,入春分交后行隂歷,秋分交后行陽(yáng)歷,皆為同名。若入春分交后行陽(yáng)歷,秋分交后行隂歷,皆為異名。其在同名,以差數(shù)加者加之,減者減之;其在異名,以差數(shù)加者減之,減者加之。皆加減黃道宿積度,為九道宿積度。以前宿九道宿積度減其宿九道宿積度,余為其宿九道宿度及分。其分就近約為太、半、少三數(shù)。求月行九道入交度:置其朔加時(shí)定日度,以其朔交初度及分減之,余為其朔加時(shí)月行入交度及余。其余,以一萬(wàn)乗之,以元法退除之,即為約余;以天正冬至加時(shí)黃道日度加而命之,即正交月離所在黃道宿度。求正交加時(shí)月離九道宿度:以正交度及分減一百一十一度三十七分,余以正交度及分乗之,退一等,半之,滿(mǎn)百為度,不滿(mǎn)為分,所得,命曰定差;以定差加黃道宿度,計(jì)去冬、夏至以來(lái)度數(shù),乗定差,九十而一,所得,依同異名加減之,滿(mǎn)若不足,進(jìn)退其度,命如前,即正交加時(shí)月離九道宿度及分。求定朔弦朢加時(shí)月離所在宿度:各置其日加時(shí)日躔所在,變從九道,循次相加。凡合朔加時(shí),月行潛在日下,與太陽(yáng)同度,是為加時(shí)月離宿次。先置朔、弦、朢加時(shí)黃道宿度,以正交加時(shí)黃道宿度減之,余以加其正交加時(shí)九道宿度,命起正交宿次,筭外,即朔、弦、朢加時(shí)所當(dāng)九道宿度。其合朔加時(shí)若非正近,則日在黃道,月在九道各入宿度雖多少不同,考其去極,若應(yīng)繩準(zhǔn),故云月行潛在日下,與太陽(yáng)同度。各以弦、朢度及分加其所當(dāng)九道宿度,滿(mǎn)宿次去之,各得加時(shí)九道月離宿次。求定朔夜半入轉(zhuǎn):以所求經(jīng)朔小余減其朔加時(shí)入轉(zhuǎn)日余,其經(jīng)朔小余以二萬(wàn)七千八百七乗之,即母轉(zhuǎn)法,為其經(jīng)朔夜半入轉(zhuǎn)。若定朔大余有進(jìn)退者,亦進(jìn)退轉(zhuǎn)日,無(wú)進(jìn)退則因經(jīng)為定。其余以轉(zhuǎn)法退收之,即為約分。求次月定朔夜半入轉(zhuǎn):因定朔夜半入轉(zhuǎn),大月加二日,小月加一日,余分皆加四千四百五十四,滿(mǎn)轉(zhuǎn)終日及約分去之,即次月定朔夜半入轉(zhuǎn);累加一日,去命如前,各得逐日夜半入轉(zhuǎn)日及分。求定朔弦朢夜半月度:各置加時(shí)小余,若非朔、朢有交者,有用定朔、弦、朢小余。以其日月行定分乗之,滿(mǎn)元法而一為度,不滿(mǎn),退除為分,命曰加時(shí)度;以減其日加時(shí)月度,即各得所求夜半月度。求晨昏月:以晨分乗其日月行定分,元法而一,為晨度;用減月行定分,余為昏度。各以晨昏度加夜半月度,即所求晨昏月所在宿度。求朔弦朢晨昏定程:各以其朔昏定月減上弦昏定月,余為朔后昏定程;以上弦昏定月減朢昏定月,余為上弦后昏定程;以朢晨定月減下弦晨定月,余為朢后晨定程;以下弦晨定月減次朔晨定月,余為下弦后晨定程。求轉(zhuǎn)積度:計(jì)四七日月行定分,以日衰加減之,為逐日月行定程;乃自所入日計(jì)求之,為其程轉(zhuǎn)積度分。其四七日月行定分者,初日益遲一千二百一十,七日漸疾一千三百四十一,十四日損疾一千四百六十一,二十一日漸遲一千三百二十八。乃觀(guān)其遲疾之極差而損益之,以百為分母。求每日晨昏月:以轉(zhuǎn)積度與晨昏定程相減,余以距后程日數(shù)除之,為日差;定程多為加,定程少為減。以加減每日月行定分,為每日轉(zhuǎn)定度及分;以每日轉(zhuǎn)定度及分加朔、弦、朢晨昏月,滿(mǎn)九道宿次去之,即為每日晨昏月離所在宿度及分。凡注歷,朔后注昏,朢后注晨。已前月度,并依九道所推,以究筭術(shù)之精微。若注歷求其速要者,即依后術(shù)以推黃道月度。求天正十一月定朔夜半平行月:以天正經(jīng)朔小余乗平行度分,元法而一為度,不滿(mǎn),退除為分秒,所得,為經(jīng)朔加時(shí)度;用減其朔中日,即經(jīng)朔晨前夜半平行月積度。若定朔有進(jìn)退,即以平行度分加減之,即為天正十一月定朔之日晨前夜半平行月積度及分。求次月定朔之日夜半平行月:置天正定朔之日夜半平行月,大月加三十五度八十分六十一秒,小月加二十二度四十三分七十三秒半,滿(mǎn)周天度分即去之,即每月定朔之晨前夜半平行月積度及分秒。求定弦朢夜半平行月:計(jì)弦、朢距定朔日數(shù),以乘平行度及分秒,以加其定朔夜半平行月積度及分秒,即定弦朢之日夜半平行月積度及分秒。亦可直求朔朢,不復(fù)求度,從簡(jiǎn)易也。求天正定朔夜半入轉(zhuǎn)度:置天正經(jīng)朔小余,以平行月度及分乗之,滿(mǎn)元法除為度,不滿(mǎn),退除為分秒,命為加時(shí)度;以減天正十一月經(jīng)朔加時(shí)入轉(zhuǎn)度及約分,余為天正十一月經(jīng)朔夜半入轉(zhuǎn)度及分。若定朔大余有進(jìn)退者,亦進(jìn)退平行度分,即為天正十一月定朔之日晨前夜半入轉(zhuǎn)度及分秒。求次月定朔及弦朢夜半入轉(zhuǎn)度:因天正十一月定朔夜半入轉(zhuǎn)度分,大月加三十二度六十九分一十七秒,小月加十九度三十二分二十九秒半,即各得次月定朔夜半入轉(zhuǎn)度及分。各以朔、弦、朢相距日數(shù)乗平行度分以加之,滿(mǎn)轉(zhuǎn)終度及秒即去之,如在中度以下者為在疾,以上者去之,余為入遲歷,即各得次朔、弦、朢定日晨前夜半入轉(zhuǎn)度及分。若以平行月度及分收之,即為定朔、弦、朢入轉(zhuǎn)日。求定朔弦朢夜半定月:以定朔、弦、朢夜半入轉(zhuǎn)度分乘其度損益衰,以一萬(wàn)約之為分,百約為秒,損益其度下遲疾度,為遲疾定度;乃以遲加疾減夜半平行月,為朔、弦、朢夜半定月積度;以冬至加時(shí)黃道日度加而命之,即定朔、弦、朢夜半月離所在宿次。若有求晨昏月,以其日晨昏分乗其日月行定分,元法而一,所得為晨昏度;以加其夜半定月,即得朔、弦、朢晨昏月度。求朔弦朢定程:各以朔、弦、朢定月相減,余為定程。若求晨昏定程,則用晨昏定月相減,朔后用昏,朢后用晨。求朔弦朢轉(zhuǎn)積度分:計(jì)四七日月行定分,以日衰加減之,為逐日月行定分;乃自所入日計(jì)之,為其程轉(zhuǎn)積度分。其四七日月行定分者,初日益遲一千二百一十,七日漸疾一千三百四十一,十四日損疾一千四百六十一,二十一日漸遲一千三百二十八。乃視其遲疾之極差而損益之,分以百為母。求每日月離宿次:各以其朔弦朢定程與轉(zhuǎn)積度相減,余為程差;以距后程日數(shù)除之,為日差;定程多為益差;定程少為損差。以日差加減月行定分,為每日月行定分;以每日月行定分累加定朔弦朢夜半月在宿次,命之,即每日晨前夜半月離宿次。如晨昏宿次,即得每日晨昏月度。
步交會(huì)術(shù)
交度母:六百二十四萬(wàn)。
周天分:二十二億七千九百二十萬(wàn)四百四十七。朔差:九百九十萬(wàn)一千一百五十九。朔差:一度、余三百六十六萬(wàn)一千一百五十九。朢差:空度、余四百九十五萬(wàn)五百七十九半。半周天:一百八十二度。余三百九十二萬(wàn)二百二十三半。約分六千二百八十二。日食限:一千四百六十四。
月食限:一千三百三十八。
盈初限縮末限:六十度八十七分半??s初限盈末限:一百二十一度七十五分。求交初度:置所求積月,以朔差乗之,滿(mǎn)周天分去之,不盡,覆減周天分,滿(mǎn)交度母除之為度,不滿(mǎn)為余,即得所求月交初度及余;以半周天加之,滿(mǎn)周天去之,余為交中度及余。若以朢差減之,即得其月朢交初度及余;以朔差減之,即得次月交初度及余;以交度母退除,即得余分。若以天正黃道日度加而命之,即各得交初、交中所在宿度及分。求日月食甚小余及加時(shí)辰刻:以其朔、朢月行遲疾定差疾加遲減經(jīng)朔朢小余,若不足減者,退大余一,加元法以減之。若加之滿(mǎn)元法者,但積其數(shù),以一千三百三十七乗之,滿(mǎn)其度所直月行定分除之,為月行差數(shù);乃以日躔盈定差盈加縮減之,余為其朔、朢食甚小余。凡加減滿(mǎn)若不足,進(jìn)退其日。此朔朢加時(shí)以究月行遲疾之?dāng)?shù),若非有交會(huì),直以經(jīng)定小余為定。置之,如前發(fā)歛加時(shí)術(shù)入之,即各得日月食甚所在晨刻。視食甚小余,如半法以下者,覆減半法,余為午前分;半法已上者,減去半法,余為午后分。求朔朢加時(shí)日月度:以其朔、望加時(shí)小余與經(jīng)朔朢小余相減,余以元法退收之,以加減其朔、朢中日及約分,經(jīng)朔望少,加;經(jīng)朔朢多,減。為其朔、朢加時(shí)中日。乃以所入日升降分乗所入日約分,以一萬(wàn)約之,所得隨以損益其日下盈縮積,為盈縮定度;以盈加縮減加時(shí)中日,為其朔、朢加時(shí)定日;朢則更加半周天,為加時(shí)定月;以天正冬至加時(shí)黃道日度加而命之,即得所求朔朢加時(shí)日月所在宿度及分。求朔朢日月加時(shí)去交度分:置朔朢日月加時(shí)定度與交初、交中度相減,余為去交度分;就近者相減之,其度以百通之為分,加時(shí)度多為后,少為前,即得其朔朢去交前后分。交初后、交中前為月行外道陽(yáng)歷;交中后、交初前,為月行內(nèi)道隂歷。求日食四正食差定數(shù):置其朔加時(shí)定日,如半周天以下者為在盈;以上者去之,余為在縮。視之,如在初限以下者為在初;以上者,覆減二至限,余為在末。置初末限度及分,盈初限、縮末限者倍之,置于上位,列二百四十三度半于下,以上減下,余以下乗上,以一百六乗之,滿(mǎn)三千九十三除之,為東西食差泛數(shù);用減五百八,余為南北食差泛數(shù)。其求南北食差定數(shù)者,乃視午前后分,如四分法之一以下者覆減之,余以乗泛數(shù);若以上者即去之,余以乗泛數(shù),皆滿(mǎn)九千七百五十除之,為南北食差定數(shù)。盈初縮末限者,食甚在卯酉以南,內(nèi)減外加;食甚在卯酉以北,內(nèi)加外減??s初盈末限者,食甚在卯酉以南,內(nèi)加外減;食甚在卯酉以北,內(nèi)減外加。其求東西食差定數(shù)者,乃視午前后分,如四分法之一以下者以乗泛數(shù);以上者,覆減半法,余乗泛數(shù),皆滿(mǎn)九千七百五十除之,為東西食差定數(shù)。盈初縮末限者,食甚在子午以東,內(nèi)減外加;食甚在子午以西,內(nèi)加外減??s初盈末限者,食甚在子午以東,內(nèi)加外減;食甚在子午以西,內(nèi)減外加。即得其朔四正食差加減定數(shù)。求日月食去交定分:視其朔四正食差加減定數(shù),同名相從,異名相消,余為食差加減緫數(shù);以加減去交分,余為日食去交定分。其去交定分不足減,乃覆減食差緫數(shù)。若陽(yáng)歷覆減入隂歷,為入食限;若隂歷覆減入陽(yáng)歷。為不入食限。凡加之滿(mǎn)食限以上者,亦不入食限。其朢食者,以其朢去交分便為其朢月食去交定分。求日月食分:日食者,視去交定分,如食限三之一以下者倍之,類(lèi)同陽(yáng)歷食分;以上者,覆減食限,余為隂歷食分。皆進(jìn)一位,滿(mǎn)九百七十六除為大分,不滿(mǎn),退除為小分,命十為限,即日食之大小分。月食者,視去交定分,如食限三之一以下者,食既;以上者,覆減食限,余進(jìn)一位,滿(mǎn)八百九十二除之為大分,不滿(mǎn),退除為小分,命十為限,即月食之大小分。其食不滿(mǎn)大分者,雖交而數(shù)淺,或不見(jiàn)食也。求日食泛用刻分:置隂陽(yáng)歷食分于上,列一千九百五十二于下,以上減下,余以乗上,滿(mǎn)二百七十一除之,為日食泛用刻、分。求月食泛用刻分:置去交定分,自相乘,交初以四百五十九除,交中以五百四十除之,所得,交初以減三千九百,交中以減三千三百一十五,余為月食泛用刻分。求日月食定用刻分:置日月食泛用刻分,以一千三百三十七乗之,以所直度下月行定分除之,所得為日月食定用刻分。求日月食虧初復(fù)滿(mǎn)時(shí)刻:以定用刻分減食甚小余,為虧初小余;加食甚,為復(fù)滿(mǎn)小余。各滿(mǎn)辰法為辰數(shù),不盡,滿(mǎn)刻法除之為刻數(shù),不滿(mǎn)為分。命辰數(shù)從子正,筭外,即得虧初復(fù)末辰刻及分。若以半辰數(shù)加之,即命從時(shí)初也。求日月食初虧復(fù)滿(mǎn)方位:其日食在陽(yáng)歷者,初食西南,甚于正南,復(fù)于東南;日在陰歷者,初食西北,甚于正北,復(fù)于東北;其食過(guò)八分者,皆初食正西,復(fù)于正東。其月食者,月在陰歷,初食東南,甚于正南,復(fù)于西南;月在陽(yáng)歷,初食東北,甚于正北,復(fù)于西北;其食八分已上者,皆初食正東,復(fù)于正西。此皆審其食甚所向,據(jù)午正而論之。其食余方察其斜正,則初虧、復(fù)滿(mǎn)乃可知矣。求月食更點(diǎn)定法:倍其朢晨分,五而一,為更法;又五而一,為點(diǎn)法。若依司辰星注歷,同內(nèi)中更點(diǎn),則倍晨分,減去待旦十刻之分,余,五而一為更法;又五而一,為點(diǎn)法。求月食入更點(diǎn):各置初虧、食甚、復(fù)滿(mǎn)小余,如在晨分以下者加晨分,如在昏分以上者減去昏分,余以更法除之為更數(shù),不滿(mǎn),以點(diǎn)法除之為點(diǎn)數(shù)。其更數(shù)命初更,筭外,即各得所入更、點(diǎn)。求月食既內(nèi)外刻分:置月食去交分,覆減食限三之一,不及減者為食不既。余列于上位,乃列三之二于下,以上減下,余以下乗上,以一百七十除之,所得,以定用刻分乗之,滿(mǎn)泛用刻分除之,為月食既內(nèi)刻分;用減定用刻分,余為既外刻、分。求日月帶食出入所見(jiàn)分?jǐn)?shù):視食甚小余在日出分以下者,為月見(jiàn)食甚日不見(jiàn)食甚;以日出分減復(fù)滿(mǎn)小余,若食甚小余在日出分已上者,為日見(jiàn)食甚、月不見(jiàn)食甚;以初虧小余減日出分,各為帶食差。若月食既者,以既內(nèi)刻分減帶食差,余乗所食分,既外刻分而一,不及減者,即帶食既出入也;以乗所食之分,滿(mǎn)定用刻分而一,即各為日帶食出、月帶食入所見(jiàn)之分。凡虧初小余多如日出分為在晝,復(fù)滿(mǎn)小余多如日出分為在夜:不帶食出入也。若食甚小余在日入分以下者,為日見(jiàn)食甚、月不見(jiàn)食甚;以日入分減復(fù)滿(mǎn)小余,若食甚小余在日入分已上者,為月見(jiàn)食甚、日不見(jiàn)食甚;以初虧小余減日入分,各為帶食差。若月食既者,以既內(nèi)刻分減帶食差,余乗所差分,既外刻分而一,不及減者,即帶食既出入也;以乗所食之分,滿(mǎn)定用刻分而一,即各為日帶食入、月帶食出所見(jiàn)之分。凡虧初小余多如日入分為在夜;復(fù)滿(mǎn)小余少如日入分為在晝,并不帶食出入也。步五星術(shù)
木星終率:一千五百五十五萬(wàn)六千五百四。終日,三百九十八日,余三萬(wàn)四千五百四,約分八千八百四十七。歷差:六萬(wàn)一千七百五十。
見(jiàn)伏常度:一十四度。
變段 變?nèi)?變度 歷度 初行率 前一 一十八日 四度 二度九十二 二十二六十四前二 三十六日 七度四十七 五度四十六 二十一六十四 前三 三十六日 六度四十 四度六十八 一十九五十五 前四 三十六日 四度二十七 三度一十二 一十五四十二 前留 二十七日 前退 四十六日四十四 五度三十二 空度六十四 后退 四十六日四十四 五度三十二 空度六十四 一十四八十九 后留 二十七日 后四 三十六日 四度二十七 三度一十二 后三 三十六日 六度四十 四度六十八 一十五九十九 后二 三十六日 七度四十七 五度四十六 一十九八十六后一 一十八日 四度 二度九十二 二十一八十 步五星術(shù) 木星終率:一千五百五十五萬(wàn)六千五百四。 終日,三百九十八日。余三萬(wàn)四千五百四,約分八千八百四十七。 歷差:六萬(wàn)一千七百五十。 見(jiàn)伏常度:一十四度。 變段 變?nèi)?變度 歷度 初行率 前一 一十八日 四度 二度九十二 二十二六十四 前二 三十六日 七度四十七 五度四十六 二十一六十四 前三 三十六日 六度四十 四度六十八 一十九五十五 前四 三十六日 四度二十七 三度一十二 一十五四十二 前留 二十七日 前退 四十六日四十四 五度三十二 空度六十四 后退 四十六日四十四 五度三十二 空度六十四 一十四八十九 后留 二十七日 后四 三十六日 四度二十七 三度一十二 后三 三十六日 六度四十 四度六十八 一十五九十九 后二 三十六日 七度四十七 五度四十六 一十九八十六 后一 一十八日 四度 二度九十二 二十一八十 火星終率:三千四十一萬(wàn)七千五百三十六。 終日,七百七十九日。余三萬(wàn)六千五百三十六。約分九千三百六十八。 歷差:六萬(wàn)一千二百四十。 見(jiàn)伏常度:一十八度。 變叚 變?nèi)?變度 歷度 初行率 前一 七十日 五十二度三十三 四十九度二十九 七十五空 前二 七十日 五十度三十三 四十七度七十 七十三三十三 前三 七十日 四十六度九十七 四十四度五十二 六十九九十八 前四 七十日 四十度二十六 三十八度一十六 六十三六十六前五 七十日 二十六度八十四 二十五度四十四 四十七二十四 前留 一十一日 前退 二十八日九十七 九度五 二度二十四 后退 二十八日九十七 九度五 二度二十四 四十六十四 后留 一十一日 后五 七十日 二十六度八十四 二十五度四十四 后四 七十日 四十度二十六 三十八度 一十六 五十一度三十六 后三 七十日 四十六度九十七 四十四度五十二 六十四二十二 后二 七十日 五十度三十三 四十七度七十 七十四十六 后一 七十日 五十二度 四十九度二十九 七十三五十六土星終率:一千四百七十四萬(wàn)五千四百四十六。 終日:三百七十八,余三千四百四十六。約分八百八十三。 歷差:六萬(wàn)二千三百五十。 見(jiàn)伏常度:一十八度半。 變叚 變?nèi)?變度 歷度 初行率 前一 二十一日 二度五十 一度五十四 一十二四十一 前二 四十二日 四度二十九 二度六十四 一十一二十三 前三 四十二日 二度八十六 一度七十六 八八十五 前留 三十五日 前退 四十九日四 三度二十三 空度四十八后退 四十九日四 三度二十三 空度四十八 八五十七 后留 三十五日 后三日 四十二日 二度八十六 一度七十六 后二 四十二日 四度二十九 二度六十四 九一十九 后一 二十一日 二度五十 一度五十四 一十一三十九 金星終率:二千二百七十七萬(wàn)二千一百九十六。 終日:五百八十三日,余三萬(wàn)五千一百九十六,約分九千二十四。 見(jiàn)伏常度:一十一度少。 變叚 變?nèi)?變度 初行率 前一 三十八日五十 四十九度七十五 一百二十九五十二前二 三十八日五十 四十九度三十七 一百二十八八十三 前三 三十八日五十 四十八度五十九 一百二十六四十三 前四 三十八日五十 四十七度二 一百二十四五十七 前五 三十八日五十 四十三度九十九 一百一十八八十八 前六 三十八日五十 三十七度六十二 一百七四十八 前七 三十八日五十 三十五度八 八十四六十八 夕留 七日 夕退 八日九十五 四度六十二 夕伏退 六日五十 四度七十五 六十二二十 晨伏退 六日五十 四度七十五 八十三九十四晨退 八日九十五 四度六十二 六十二二十 晨留 七日 后七 三十八日五十 三十五度八 后六 三十八日五十 三十七度六十二 八十七九十四 后五 三十八日五十 四十三度八十九 一百九一十二 后四 三十八日五十 四十七度二 一百一十九九十九 后三 三十八日五十 四十八度五十九 一百二十四九十九 后二 三十八日五十 四十九度三十七 一百二十七六十三 后一 三十八日五十 四十九度七十五 一百二十八九十二 水星終率:四百五十一萬(wàn)九千一百八十四,改九千一百九十四。終日,一百一十五日,余三萬(wàn)四千一百八十四,約分八千七百六十五。 見(jiàn)伏常度:一十八度。 變叚 變?nèi)?變度 初行率 前一 一十五日 三十三度 二百四十七五十 前二 三十日 三十三度 一百七十六 前留 三日 夕伏退 九日九十四 八度六 晨伏退 九日九十四 八度六 一百三十六七十二 后留 三日 后二 三十日 三十三度后一 一十五日 三十三度 一百九十二五十 求五星天正冬至后諸叚中積中星:置氣積分,各以其星終率去之,不盡,覆減終率,余滿(mǎn)元法為日,不滿(mǎn),退除為分,即天正冬至后其星平合中積。重列之為中星,因命為前一叚之初,以諸叚變?nèi)?、變度累加減之,即為諸叚中星。變?nèi)占訙p中積,變度加減中星。求木火土三星入歷:以其星歷差乗積年,滿(mǎn)周天分去之,不盡,以度母除之為度,不滿(mǎn),退除為分,命曰差度;以減其星平合中星,即為平合入歷度分。以其星其叚歷度加之,滿(mǎn)周天度分即去之,各得其星其叚入歷度分。金水附日而行,更不求歷差。其木火、土三星前變?yōu)槌?,后變?yōu)橄Α=鹚乔白優(yōu)橄?,后變?yōu)槌?。求木火土三星諸段盈縮定差:木土二星,置其星其段入歷度分,如半周天以下者為在盈;以上者,減去半周天,余為在縮。置盈縮度分,如在一象以下者為在初限;以上者,覆減半周天,余為在末限。置初末限度及分于上,列半周天于下,以上減下,以下乗上,木進(jìn)一位,土九因之,皆滿(mǎn)百為分,分滿(mǎn)百為度,命曰盈縮定差。其火星,置盈縮度分,如在初限以下者為在初;以上者,覆減半周天,余為在末。以四十五度六十五分半為盈初縮末限度,以一百三十六度九十六分半為縮初盈末限度分。置初末限度于上,盈初縮末三因之。列二百七十三度九十三分于下,以上減下,余以下乗上,以一十二乗之,滿(mǎn)萬(wàn)為度,不滿(mǎn),百約為分,命曰盈縮定差。若用立成法,以其度下?lián)p益率乗度下約分,滿(mǎn)百者,以損益其度下盈縮差度為盈縮定差。若在留退叚者,即在盈縮泛差。求木火土三星留退差:置后退、后留盈縮泛差,各列其星盈縮極度于下,木極度,八度三十三分,火極度,二十二度五十一分,土極度,七度五十分。以上減下,余以下乗上,水、土三因之,火倍之。皆滿(mǎn)百為度,命曰留退差。后退初半之,后留全用。其留退差,在盈益減損加;在縮損減益加其叚盈縮泛差,為后退、后留定差。因?yàn)楹筮t初叚定差。各須類(lèi)會(huì)前留定差,觀(guān)其盈縮,察其降差也。求五星諸叚定積:各置其星其叚中積,以其叚盈縮定差盈加縮減之,即其星其叚定積及分;以天正冬至大余及約分加之,滿(mǎn)紀(jì)法去之,不盡,命甲子,筭外,即得日辰。其五星合見(jiàn)、伏,即為推筭叚定日;后求見(jiàn)、伏合定日,即歷注其日。求五星諸叚所在月日:各置諸叚定積,以天正閏日及約分加之,滿(mǎn)朔策及分去之為月數(shù),不滿(mǎn),為入月以來(lái)日數(shù)及分。其月數(shù)命從天正十一月,筭外,即其星其叚入其月經(jīng)朔日數(shù)及分。定朔有進(jìn)退者,亦進(jìn)退其日,以日辰為定。若以氣策及約分去定積,命從冬至,筭外,即得其叚入氣日及分。求五星諸段加時(shí)定星:各置其星其段中星,以其段盈縮定差盈加縮減之,即五星諸叚定星。若以天正冬至加時(shí)黃道日度加而命之,即其叚加時(shí)定星所在宿次。五星皆以前留為前退初定星,后留為后順初定星。求五星諸段初日晨前夜半定星:木、火、土三星,以其星其叚盈縮定差與次度下盈縮定差相減,余為其度損益差;以乗其叚初行率,一百約之,所得,以加減其叚初行率,在盈,益加損減;在縮,益減損加。以一百乗之,為初行積分;又置一百分,亦依其數(shù)加減之,以除初行積分,為初日定行分;以乘其段初日約分,以一百約之,順減退加其段定星,為其段初日晨前夜半定星;以天正冬至加時(shí)黃道日度加而命之,即得所求。金水二星,直以初行率便為初日定行分。求太陽(yáng)盈縮度:各置其段定積,如二至限以下為在盈;以上者去之,余為在縮。又視入盈縮度,如一象以下者為在初;以上者,覆減二至限,余為在末。置初末限度及分,如前日度術(shù)求之,即得所求。若用立成者,直以其度下?lián)p益分乗度余,百約之,所得,損益其度下盈縮差,亦得所求。求諸叚日度率:以二叚日辰相距為日率;又以二叚夜半定星相減,余為其叚度率及分。求諸段平行分:各置其段度率及分,以其段日率除之,為其叚平行分。求諸段泛差:各以其段平行分與后段平行分相減,余為泛差;并前叚泛差,四因之,退一等,為其叚緫差。五星前留前、后留后一叚,皆以六因平行分,退一等,為其段緫差。水星為半緫差,其在退行者,木、火、土以十二乗其叚平行分,退一等,為其叚緫差。金星退行者,以其叚泛差為緫差,后變則反用初末。水星退行者,以其叚平行分為緫差。若在前后順第一叚者,乃半次叚緫差,為其叚緫差。求諸叚初末日行分:各半其叚緫差,加減其叚平行分,為其叚初末日行分。前變加為初,減為末;后變減為初,加為末。其在退叚者,前則減為初,加為末;后則加為初,減為末。若前后段行分多少不倫者,乃平注之;或緫差不滿(mǎn)大分者,亦平注之。皆類(lèi)會(huì)前后初末,不可失其衰殺。求諸叚日差:減其叚日率一,以除其叚緫差,為其叚日差;后行分少為損,后行分多為益。求每日晨前夜半星行宿次:置其段初日行分,以日差累損益之,為每日行分;以每日行分累加減其段初日晨前夜半宿次,命之,即每日星行宿次。徑求其日宿次:置所求日,減一,以乗日差,以加減初日行分,后少,減之;后多,加之。為所求日行分;乃加初日行分而半之,以所求日數(shù)乗之,為徑求積度;以加減其叚初日宿次,命之,即徑求其日星宿次。求五星定合定日:木、火、土三星,以其叚初日行分減一百分,余以除其日太陽(yáng)盈縮分為日,不滿(mǎn),退除為分,命曰距合差日及分;以差日及分減太陽(yáng)盈縮分,余為距合差度;以差日、差度盈減縮加。金、水二星平合者,以一百分減初日行分,余以除其日太陽(yáng)盈縮分為日,不滿(mǎn),退除為分,命曰距合差日及分;以減太陽(yáng)盈縮分,余為距合差度;以差日、差度盈加縮減。金、水星再合者,以初日行分加一百分,以除其日太陽(yáng)盈縮分為日,不滿(mǎn),退除為分,命曰再合差日;以減太陽(yáng)盈縮分,余為再合差度;以差日、差度盈加縮減,差度則反其加減。皆以加減定積,為再合定日;以天正冬至大余及約分加而命之,即得定合日辰。求五星定見(jiàn)伏:木、火、土三星,各以其叚初日行分減一百分,余以除其日太陽(yáng)盈縮分為日,不滿(mǎn),退除為分,以盈減縮加。金水二星夕見(jiàn)晨伏者,以一百分減初日行分,余以除其日太陽(yáng)盈縮分為日,不滿(mǎn),退除為分,以盈加縮減。其在晨見(jiàn)夕伏者,以一百分加其段初日行分,以除其日太陽(yáng)盈縮分為日,不滿(mǎn),退除為分,以盈減縮加。皆加減其叚定積,為見(jiàn)伏定日;以加冬至大余及約分,滿(mǎn)紀(jì)法去之,命從甲子,筭外,即得五星見(jiàn)、伏定日日辰。琮又論歷曰:“古今之歷,必有術(shù)過(guò)于前人,而可以為萬(wàn)世之法者,乃為勝也。若一行為大衍歷議及略例,校正歷世,以求歷法強(qiáng)弱,為歷家體要,得中平之?dāng)?shù)。劉焯悟日行有盈縮之差。舊歷推日行平行一度,至此方悟日行有盈縮。冬至前后定日八十八日八十九分,夏至前后定日九十三日七十四分。冬至前后日行一度有余,夏至前后日行不及一度。李淳風(fēng)悟定朔之法,并氣朔、閏余,皆同一術(shù)。舊歷定朔平注一大一小,至此以日行盈縮,月行遲疾加減朔余,余為定朔朢加時(shí),以定大小,不過(guò)三數(shù)。自此后日食在朔,月食在朢,更無(wú)晦二之差。舊歷皆須用章歲、章月之?dāng)?shù),使閏余有差。淳風(fēng)造麟德歷,以氣朔、閏余同歸一母。張子信悟月行有交道表里,五星有入氣加減。北齊學(xué)士張子信因葛榮亂,隱居海島三十余年,專(zhuān)以圓儀揆測(cè)天道,始悟月行有交道表里。在表為外道陽(yáng)歷,在里為內(nèi)道隂歷。月行在內(nèi)道,則日有食之,月行在外道則無(wú)食。若月外之人北戶(hù)向日之地,則反觀(guān)有食。又舊歷五星率無(wú)盈縮,至是始悟五星皆有盈縮加減之?dāng)?shù)。宋何承天始悟測(cè)景以定氣序,景極長(zhǎng),冬至;景極短,夏至。始立八尺之表,連測(cè)十余年,即知舊景初歷冬至常遲天三日,乃造元嘉歷,冬至加時(shí)比舊退減三日。晉姜岌始悟以月食所沖之宿為日所在之度。日所在不知宿度,至此以月食之宿所沖為日所在宿度。后漢劉洪作乾象歷,始悟月行有遲疾數(shù)。舊歷月平行十三度十九分度之七,至是始悟月行有遲疾之差,極遲則日行十二度強(qiáng),極疾則日行十四度太,其遲疾極差五度有余。宋祖沖之始悟歲差。書(shū)堯典曰:“日短星昴,以正仲冬。宵中星虛,以殷仲秋?!敝两袢в嗄辏行撬钊喽?,則知每歲有漸差之?dāng)?shù)。造大明歷率四十五年九月而退差一度。唐徐升作宣明歷,悟日食有氣刻差數(shù)。舊歷推日食皆平求食分多不允合。至是推日食,以氣刻差數(shù)增損之,測(cè)日食分?jǐn)?shù),稍近天驗(yàn)。明天歷悟日月會(huì)合為朔,所立日法,積年有自然之?dāng)?shù),及立法推求晷景,知?dú)夤?jié)加時(shí)所在。自元嘉歷后所立日法,以四十九分之二十六為強(qiáng)率,以十七分之九為弱率,并強(qiáng)弱之?dāng)?shù)為日法朔余。自后諸歷効之。殊不知日月會(huì)合為朔,并朔余虛分為日法,蓋自然之理。其氣節(jié)加時(shí),晉、漢以來(lái)約而要取,有差半日。今立法推求,得盡其數(shù)。后之造歷者,莫不遵用焉。其踈謬之甚者,即苗守信之乾元?dú)v,馬重績(jī)之調(diào)元?dú)v,郭紹之五紀(jì)歷也,大槩無(wú)出于此矣。然造歷者,皆須會(huì)日月之行,以為晦朔之?dāng)?shù),驗(yàn)春秋日食以明強(qiáng)弱。其于氣序,則取驗(yàn)于傳之南至。其日行盈縮、月行遲疾、五星加減、二曜食差、日宿月離、中星晷景,立數(shù)立法,悉本之于前語(yǔ),然后較驗(yàn)。上自夏仲康五年九月‘辰弗集于房’以至于今,其星辰氣朔、日月交食等,使三千年間若應(yīng)準(zhǔn)繩,而有前有后、有親有踈者,即為中平之?dāng)?shù),乃可施于后世。其較驗(yàn)則依一行、孫思恭,取數(shù)多而不以少,得為親密。較日月交食,若一分二刻以下為親,二分四刻以下為近,三分五刻以上為遠(yuǎn)。以歷注有食而天驗(yàn)無(wú)食,或天驗(yàn)有食而歷注無(wú)食者為失。其較星度,則以差天二度以下為親,三度以下為近,四度以上為逺。其較晷景尺寸,以二分以下為親,三分以下為近,四分以上為遠(yuǎn)。若較古而得數(shù)多,又近于今,兼立法立數(shù)得其理而通于本者為最也?!辩灾^善歷,嘗曰:“世之知?dú)v者尠,近世獨(dú)孫思恭為妙”,而思恭又嘗推劉羲叟為知?dú)v焉。
志卷第二十八
