auto-sklearn自動化的機器學(xué)習(xí)工具包
auto-sklearn是一個自動化的機器學(xué)習(xí)工具包,是scikit-learn估算器的直接替代品:
>>> import autosklearn.classification >>> cls = autosklearn.classification.AutoSklearnClassifier() >>> cls.fit(X_train, y_train) >>> predictions = cls.predict(X_test)
auto-sklearn使機器學(xué)習(xí)用戶從算法選擇和超參數(shù)調(diào)整中解放出來。 它利用了貝葉斯優(yōu)化,元學(xué)習(xí)和集合構(gòu)造的最新優(yōu)勢。 閱讀在NIPS 2015上發(fā)表的論文,了解有關(guān)auto-sklearn背后技術(shù)的更多信息。
>>> import autosklearn.classification
>>> import sklearn.model_selection
>>> import sklearn.datasets
>>> import sklearn.metrics
>>> X, y = sklearn.datasets.load_digits(return_X_y=True)
>>> X_train, X_test, y_train, y_test = \
sklearn.model_selection.train_test_split(X, y, random_state=1)
>>> automl = autosklearn.classification.AutoSklearnClassifier()
>>> automl.fit(X_train, y_train)
>>> y_hat = automl.predict(X_test)
>>> print("Accuracy score", sklearn.metrics.accuracy_score(y_test, y_hat))評論
圖片
表情
