實操教程 | 深度學(xué)習pytorch訓(xùn)練代碼模板(個人習慣)

極市導(dǎo)讀
本文從參數(shù)定義,到網(wǎng)絡(luò)模型定義,再到訓(xùn)練步驟,驗證步驟,測試步驟,總結(jié)了一套較為直觀的模板。 >>加入極市CV技術(shù)交流群,走在計算機視覺的最前沿
目錄如下:
導(dǎo)入包以及設(shè)置隨機種子 以類的方式定義超參數(shù) 定義自己的模型 定義早停類(此步驟可以省略) 定義自己的數(shù)據(jù)集Dataset,DataLoader 實例化模型,設(shè)置loss,優(yōu)化器等 開始訓(xùn)練以及調(diào)整lr 繪圖 預(yù)測
一、導(dǎo)入包以及設(shè)置隨機種子
import numpy as np
import torch
import torch.nn as nn
import numpy as np
import pandas as pd
from torch.utils.data import DataLoader, Dataset
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import random
seed = 42
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
二、以類的方式定義超參數(shù)
class argparse():
pass
args = argparse()
args.epochs, args.learning_rate, args.patience = [30, 0.001, 4]
args.hidden_size, args.input_size= [40, 30]
args.device, = [torch.device("cuda:0" if torch.cuda.is_available() else "cpu"),]
三、定義自己的模型
class Your_model(nn.Module):
def __init__(self):
super(Your_model, self).__init__()
pass
def forward(self,x):
pass
return x
四、定義早停類(此步驟可以省略)
class EarlyStopping():
def __init__(self,patience=7,verbose=False,delta=0):
self.patience = patience
self.verbose = verbose
self.counter = 0
self.best_score = None
self.early_stop = False
self.val_loss_min = np.Inf
self.delta = delta
def __call__(self,val_loss,model,path):
print("val_loss={}".format(val_loss))
score = -val_loss
if self.best_score is None:
self.best_score = score
self.save_checkpoint(val_loss,model,path)
elif score < self.best_score+self.delta:
self.counter+=1
print(f'EarlyStopping counter: {self.counter} out of {self.patience}')
if self.counter>=self.patience:
self.early_stop = True
else:
self.best_score = score
self.save_checkpoint(val_loss,model,path)
self.counter = 0
def save_checkpoint(self,val_loss,model,path):
if self.verbose:
print(
f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ...')
torch.save(model.state_dict(), path+'/'+'model_checkpoint.pth')
self.val_loss_min = val_loss
五、定義自己的數(shù)據(jù)集Dataset,DataLoader
class Dataset_name(Dataset):
def __init__(self, flag='train'):
assert flag in ['train', 'test', 'valid']
self.flag = flag
self.__load_data__()
def __getitem__(self, index):
pass
def __len__(self):
pass
def __load_data__(self, csv_paths: list):
pass
print(
"train_X.shape:{}\ntrain_Y.shape:{}\nvalid_X.shape:{}\nvalid_Y.shape:{}\n"
.format(self.train_X.shape, self.train_Y.shape, self.valid_X.shape, self.valid_Y.shape))
train_dataset = Dataset_name(flag='train')
train_dataloader = DataLoader(dataset=train_dataset, batch_size=64, shuffle=True)
valid_dataset = Dataset_name(flag='valid')
valid_dataloader = DataLoader(dataset=valid_dataset, batch_size=64, shuffle=True)
六、實例化模型,設(shè)置loss,優(yōu)化器等
model = Your_model().to(args.device)
criterion = torch.nn.MSELoss()
optimizer = torch.optim.Adam(Your_model.parameters(),lr=args.learning_rate)
train_loss = []
valid_loss = []
train_epochs_loss = []
valid_epochs_loss = []
early_stopping = EarlyStopping(patience=args.patience,verbose=True)
七、開始訓(xùn)練以及調(diào)整lr
for epoch in range(args.epochs):
Your_model.train()
train_epoch_loss = []
for idx,(data_x,data_y) in enumerate(train_dataloader,0):
data_x = data_x.to(torch.float32).to(args.device)
data_y = data_y.to(torch.float32).to(args.device)
outputs = Your_model(data_x)
optimizer.zero_grad()
loss = criterion(data_y,outputs)
loss.backward()
optimizer.step()
train_epoch_loss.append(loss.item())
train_loss.append(loss.item())
if idx%(len(train_dataloader)//2)==0:
print("epoch={}/{},{}/{}of train, loss={}".format(
epoch, args.epochs, idx, len(train_dataloader),loss.item()))
train_epochs_loss.append(np.average(train_epoch_loss))
#=====================valid============================
Your_model.eval()
valid_epoch_loss = []
for idx,(data_x,data_y) in enumerate(valid_dataloader,0):
data_x = data_x.to(torch.float32).to(args.device)
data_y = data_y.to(torch.float32).to(args.device)
outputs = Your_model(data_x)
loss = criterion(outputs,data_y)
valid_epoch_loss.append(loss.item())
valid_loss.append(loss.item())
valid_epochs_loss.append(np.average(valid_epoch_loss))
#==================early stopping======================
early_stopping(valid_epochs_loss[-1],model=Your_model,path=r'c:\\your_model_to_save')
if early_stopping.early_stop:
print("Early stopping")
break
#====================adjust lr========================
lr_adjust = {
2: 5e-5, 4: 1e-5, 6: 5e-6, 8: 1e-6,
10: 5e-7, 15: 1e-7, 20: 5e-8
}
if epoch in lr_adjust.keys():
lr = lr_adjust[epoch]
for param_group in optimizer.param_groups:
param_group['lr'] = lr
print('Updating learning rate to {}'.format(lr))
八、繪圖
plt.figure(figsize=(12,4))
plt.subplot(121)
plt.plot(train_loss[:])
plt.title("train_loss")
plt.subplot(122)
plt.plot(train_epochs_loss[1:],'-o',label="train_loss")
plt.plot(valid_epochs_loss[1:],'-o',label="valid_loss")
plt.title("epochs_loss")
plt.legend()
plt.show()
九、預(yù)測
# 此處可定義一個預(yù)測集的Dataloader。也可以直接將你的預(yù)測數(shù)據(jù)reshape,添加batch_size=1
Your_model.eval()
predict = Your_model(data)如果覺得有用,就請分享到朋友圈吧!
公眾號后臺回復(fù)“CVPR21檢測”獲取CVPR2021目標檢測論文下載~

# CV技術(shù)社群邀請函 #

備注:姓名-學(xué)校/公司-研究方向-城市(如:小極-北大-目標檢測-深圳)
即可申請加入極市目標檢測/圖像分割/工業(yè)檢測/人臉/醫(yī)學(xué)影像/3D/SLAM/自動駕駛/超分辨率/姿態(tài)估計/ReID/GAN/圖像增強/OCR/視頻理解等技術(shù)交流群
每月大咖直播分享、真實項目需求對接、求職內(nèi)推、算法競賽、干貨資訊匯總、與 10000+來自港科大、北大、清華、中科院、CMU、騰訊、百度等名校名企視覺開發(fā)者互動交流~

評論
圖片
表情
