1. 神經(jīng)網(wǎng)絡(luò)調(diào)參技巧:warmup策略

        共 8255字,需瀏覽 17分鐘

         ·

        2022-06-12 15:07

        本文來源:煉丹筆記
        有一些論文對(duì)warmup進(jìn)行了討論,使用 SGD 訓(xùn)練神經(jīng)網(wǎng)絡(luò)時(shí),在初始使用較大學(xué)習(xí)率而后期改為較小學(xué)習(xí)率在各種任務(wù)場(chǎng)景下都是一種廣為使用的做法,在實(shí)踐中效果好且最近也有若干文章嘗試對(duì)其進(jìn)行了理論解釋。例如《On Layer Normalization in the Transformer Architecture》等,論文中作者發(fā)現(xiàn)Post-LN Transformer在訓(xùn)練的初始階段,輸出層附近的期望梯度非常大,所以沒有warm-up的話模型優(yōu)化過程就會(huì)非常不穩(wěn)定。
        雖然在實(shí)踐中效果好且最近也有若干文章嘗試對(duì)其進(jìn)行了理論解釋,但到底為何有效,目前還沒有被充分證明。

        01

        Transformer中的Warmup
        Transformer中的warm-up可以看作學(xué)習(xí)率 lr 隨迭代數(shù) t 的函數(shù):
        學(xué)習(xí)率 lr 會(huì)以某種方式遞減,學(xué)習(xí)率從0開始增長(zhǎng),經(jīng)過 Twarmup 次迭代達(dá)到最大。論文中對(duì)Adam,SGD等有無warmup做了實(shí)驗(yàn),
        可以看到,warmup增加了訓(xùn)練時(shí)間,同時(shí)在最初階段使用較大的學(xué)習(xí)率會(huì)導(dǎo)致Loss偏大,對(duì)模型的訓(xùn)練的影響是巨大的。warmup在這里對(duì)SGD是非常重要的。

        02

        Rectified Adam
        Rectified Adam針對(duì)warmup前期數(shù)據(jù)樣本不足導(dǎo)致的biased variance的問題提出了解決方案,論文中實(shí)驗(yàn)結(jié)果看到還是有一定效果的。RAdam 由隨機(jī)初始化帶來的 Variance 比較小。即使隔離掉 warmup 部分的影響后Variance 也是要比 Adam 小的。

        03

        Warmup代碼
        class AdamWarmup(Optimizer):
        def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, warmup = 0): if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, warmup = warmup) super(AdamW, self).__init__(params, defaults)
        def __setstate__(self, state): super(AdamW, self).__setstate__(state)
        def step(self, closure=None): loss = None if closure is not None: loss = closure()
        for group in self.param_groups:
        for p in group['params']: if p.grad is None: continue grad = p.grad.data.float() if grad.is_sparse: raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead')
        p_data_fp32 = p.data.float()
        state = self.state[p]
        if len(state) == 0: state['step'] = 0 state['exp_avg'] = torch.zeros_like(p_data_fp32) state['exp_avg_sq'] = torch.zeros_like(p_data_fp32) else: state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32) state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32)
        exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] beta1, beta2 = group['betas']
        state['step'] += 1
        exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) exp_avg.mul_(beta1).add_(1 - beta1, grad)
        denom = exp_avg_sq.sqrt().add_(group['eps']) bias_correction1 = 1 - beta1 ** state['step'] bias_correction2 = 1 - beta2 ** state['step'] if group['warmup'] > state['step']: scheduled_lr = 1e-8 + state['step'] * group['lr'] / group['warmup'] else: scheduled_lr = group['lr']
        step_size = scheduled_lr * math.sqrt(bias_correction2) / bias_correction1 if group['weight_decay'] != 0: p_data_fp32.add_(-group['weight_decay'] * scheduled_lr, p_data_fp32)
        p_data_fp32.addcdiv_(-step_size, exp_avg, denom)
        p.data.copy_(p_data_fp32)
        return loss

        04

        RAdam代碼
        import mathimport torchfrom torch.optim.optimizer import Optimizer, required
        class RAdam(Optimizer):
        def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, degenerated_to_sgd=False): if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) self.degenerated_to_sgd = degenerated_to_sgd if isinstance(params, (list, tuple)) and len(params) > 0 and isinstance(params[0], dict): for param in params: if 'betas' in param and (param['betas'][0] != betas[0] or param['betas'][1] != betas[1]): param['buffer'] = [[None, None, None] for _ in range(10)] defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, buffer=[[None, None, None] for _ in range(10)]) super(RAdam, self).__init__(params, defaults)
        def __setstate__(self, state): super(RAdam, self).__setstate__(state)
        def step(self, closure=None):
        loss = None if closure is not None: loss = closure()
        for group in self.param_groups:
        for p in group['params']: if p.grad is None: continue grad = p.grad.data.float() if grad.is_sparse: raise RuntimeError('RAdam does not support sparse gradients')
        p_data_fp32 = p.data.float()
        state = self.state[p]
        if len(state) == 0: state['step'] = 0 state['exp_avg'] = torch.zeros_like(p_data_fp32) state['exp_avg_sq'] = torch.zeros_like(p_data_fp32) else: state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32) state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32)
        exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] beta1, beta2 = group['betas']
        exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) exp_avg.mul_(beta1).add_(1 - beta1, grad)
        state['step'] += 1 buffered = group['buffer'][int(state['step'] % 10)] if state['step'] == buffered[0]: N_sma, step_size = buffered[1], buffered[2] else: buffered[0] = state['step'] beta2_t = beta2 ** state['step'] N_sma_max = 2 / (1 - beta2) - 1 N_sma = N_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t) buffered[1] = N_sma
        # more conservative since it's an approximated value if N_sma >= 5: step_size = math.sqrt((1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / (N_sma_max - 2)) / (1 - beta1 ** state['step']) elif self.degenerated_to_sgd: step_size = 1.0 / (1 - beta1 ** state['step']) else: step_size = -1 buffered[2] = step_size
        # more conservative since it's an approximated value if N_sma >= 5: if group['weight_decay'] != 0: p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32) denom = exp_avg_sq.sqrt().add_(group['eps']) p_data_fp32.addcdiv_(-step_size * group['lr'], exp_avg, denom) p.data.copy_(p_data_fp32) elif step_size > 0: if group['weight_decay'] != 0: p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32) p_data_fp32.add_(-step_size * group['lr'], exp_avg) p.data.copy_(p_data_fp32)
        return loss
        參考資料
        https://openreview.net/attachment?id=B1x8anVFPr&name=original_pdf
        https://arxiv.org/pdf/1603.05027.pdf
        https://github.com/LiyuanLucasLiu/RAdam
        https://www.zhihu.com/question/340834465/answer/791466806
        https://arxiv.org/abs/1908.03265v1

        猜您喜歡:

         戳我,查看GAN的系列專輯~!
        一頓午飯外賣,成為CV視覺前沿弄潮兒!
        CVPR 2022 | 25+方向、最新50篇GAN論文
         ICCV 2021 | 35個(gè)主題GAN論文匯總
        超110篇!CVPR 2021最全GAN論文梳理
        超100篇!CVPR 2020最全GAN論文梳理

        拆解組新的GAN:解耦表征MixNMatch

        StarGAN第2版:多域多樣性圖像生成

        附下載 | 《可解釋的機(jī)器學(xué)習(xí)》中文版

        附下載 |《TensorFlow 2.0 深度學(xué)習(xí)算法實(shí)戰(zhàn)》

        附下載 |《計(jì)算機(jī)視覺中的數(shù)學(xué)方法》分享

        《基于深度學(xué)習(xí)的表面缺陷檢測(cè)方法綜述》

        《零樣本圖像分類綜述: 十年進(jìn)展》

        《基于深度神經(jīng)網(wǎng)絡(luò)的少樣本學(xué)習(xí)綜述》

        瀏覽 165
        點(diǎn)贊
        評(píng)論
        收藏
        分享

        手機(jī)掃一掃分享

        分享
        舉報(bào)
        評(píng)論
        圖片
        表情
        推薦
        點(diǎn)贊
        評(píng)論
        收藏
        分享

        手機(jī)掃一掃分享

        分享
        舉報(bào)
          
          

            1. 2020人人操| 玖玖视频在线观看免费 | 国产精品亚洲五月天丁香 | 日屄AV | 少妇下岗被迫献身h |