1. CVPR 2021 論文和開源項(xiàng)目合集(Papers with Code)

        共 15042字,需瀏覽 31分鐘

         ·

        2021-03-15 03:43




        向AI轉(zhuǎn)型的程序員都關(guān)注了這個(gè)號(hào)??????

        人工智能大數(shù)據(jù)與深度學(xué)習(xí)  公眾號(hào):datayx


        【CVPR 2021 論文開源目錄】

        https://github.com/amusi/CVPR2021-Papers-with-Code


        • Backbone

        • NAS

        • GAN

        • Visual Transformer

        • 自監(jiān)督(Self-Supervised)

        • 目標(biāo)檢測(Object Detection)

        • 實(shí)例分割(Instance Segmentation)

        • 全景分割(Panoptic Segmentation)

        • 視頻理解/行為識(shí)別(Video Understanding)

        • 人臉識(shí)別(Face Recognition)

        • 人臉活體檢測(Face Anti-Spoofing)

        • Deepfake檢測(Deepfake Detection)

        • 人臉年齡估計(jì)(Age-Estimation)

        • 人臉解析(Human Parsing)

        • 超分辨率(Super-Resolution)

        • 圖像恢復(fù)(Image Restoration)

        • 3D目標(biāo)檢測(3D Object Detection)

        • 3D語義分割(3D Semantic Segmentation)

        • 3D目標(biāo)跟蹤(3D Object Tracking)

        • 3D點(diǎn)云配準(zhǔn)(3D Point Cloud Registration)

        • 6D位姿估計(jì)(6D Pose Estimation)

        • 深度估計(jì)(Depth Estimation)

        • 對(duì)抗樣本(Adversarial-Examples)

        • 圖像檢索(Image Retrieval)

        • Zero-Shot Learning

        • 視覺推理(Visual Reasoning)

        • "人-物"交互(HOI)檢測

        • 陰影去除(Shadow Removal)

        • 數(shù)據(jù)集(Datasets)

        • 其他(Others)

        • 不確定中沒中(Not Sure)



        Backbone

        Coordinate Attention for Efficient Mobile Network Design

        • Paper: https://arxiv.org/abs/2103.02907

        • Code: https://github.com/Andrew-Qibin/CoordAttention

        Inception Convolution with Efficient Dilation Search

        • Paper: https://arxiv.org/abs/2012.13587

        • Code: None

        RepVGG: Making VGG-style ConvNets Great Again

        • Paper: https://arxiv.org/abs/2101.03697

        • Code: https://github.com/DingXiaoH/RepVGG


        NAS

        Inception Convolution with Efficient Dilation Search

        • Paper: https://arxiv.org/abs/2012.13587

        • Code: None


        GAN

        Training Generative Adversarial Networks in One Stage

        • Paper: https://arxiv.org/abs/2103.00430

        • Code: None

        Closed-Form Factorization of Latent Semantics in GANs

        • Homepage: https://genforce.github.io/sefa/

        • Paper: https://arxiv.org/abs/2007.06600

        • Code: https://github.com/genforce/sefa

        Anycost GANs for Interactive Image Synthesis and Editing

        • Paper: https://arxiv.org/abs/2103.03243

        • Code: https://github.com/mit-han-lab/anycost-gan

        Image-to-image Translation via Hierarchical Style Disentanglement

        • Paper: https://arxiv.org/abs/2103.01456

        • Code: https://github.com/imlixinyang/HiSD


        Visual Transformer

        End-to-End Video Instance Segmentation with Transformers

        • Paper(Oral): https://arxiv.org/abs/2011.14503

        • Code: None

        UP-DETR: Unsupervised Pre-training for Object Detection with Transformers

        • Paper(Oral): https://arxiv.org/abs/2011.09094

        • Code: https://github.com/dddzg/up-detr

        End-to-End Human Object Interaction Detection with HOI Transformer

        • Paper: https://arxiv.org/abs/2103.04503

        • Code: https://github.com/bbepoch/HoiTransformer

        Transformer Interpretability Beyond Attention Visualization

        • Paper: https://arxiv.org/abs/2012.09838

        • Code: https://github.com/hila-chefer/Transformer-Explainability


        自監(jiān)督

        Dense Contrastive Learning for Self-Supervised Visual Pre-Training

        • Paper: https://arxiv.org/abs/2011.09157

        • Code: https://github.com/WXinlong/DenseCL


        目標(biāo)檢測(Object Detection)

        UP-DETR: Unsupervised Pre-training for Object Detection with Transformers

        • Paper(Oral): https://arxiv.org/abs/2011.09094

        • Code: https://github.com/dddzg/up-detr

        General Instance Distillation for Object Detection

        • Paper: https://arxiv.org/abs/2103.02340

        • Code: None

        Semantic Relation Reasoning for Shot-Stable Few-Shot Object Detection

        • Paper: https://arxiv.org/abs/2103.01903

        • Code: None

        There is More than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking with Sound by Distilling Multimodal Knowledge

        • Homepage: http://rl.uni-freiburg.de/research/multimodal-distill

        • Paper: https://arxiv.org/abs/2103.01353

        • Code: http://rl.uni-freiburg.de/research/multimodal-distill

        Generalized Focal Loss V2: Learning Reliable Localization Quality Estimation for Dense Object Detection

        • Paper: https://arxiv.org/abs/2011.12885

        • Code: https://github.com/implus/GFocalV2

        Multiple Instance Active Learning for Object Detection

        • Paper: https://github.com/yuantn/MIAL/raw/master/paper.pdf

        • Code: https://github.com/yuantn/MIAL

        Towards Open World Object Detection

        • Paper: https://arxiv.org/abs/2103.02603

        • Code: https://github.com/JosephKJ/OWOD


        實(shí)例分割(Instance Segmentation)

        End-to-End Video Instance Segmentation with Transformers

        • Paper(Oral): https://arxiv.org/abs/2011.14503

        • Code: None

        Zero-shot instance segmentation(Not Sure)

        • Paper: None

        • Code: https://github.com/CVPR2021-pape-id-1395/CVPR2021-paper-id-1395


        全景分割(Panoptic Segmentation)

        Cross-View Regularization for Domain Adaptive Panoptic Segmentation

        • Paper: https://arxiv.org/abs/2103.02584

        • Code: None


        視頻理解/行為識(shí)別(Video Understanding)

        TDN: Temporal Difference Networks for Efficient Action Recognition

        • Paper: https://arxiv.org/abs/2012.10071

        • Code: https://github.com/MCG-NJU/TDN


        人臉識(shí)別(Face Recognition)

        WebFace260M: A Benchmark Unveiling the Power of Million-Scale Deep Face Recognition

        • Homepage: https://www.face-benchmark.org/

        • Paper: https://arxiv.org/abs/2103.04098

        • Dataset: https://www.face-benchmark.org/

        When Age-Invariant Face Recognition Meets Face Age Synthesis: A Multi-Task Learning Framework

        • Paper(Oral): https://arxiv.org/abs/2103.01520

        • Code: https://github.com/Hzzone/MTLFace

        • Dataset: https://github.com/Hzzone/MTLFace


        人臉活體檢測(Face Anti-Spoofing)

        Cross Modal Focal Loss for RGBD Face Anti-Spoofing

        • Paper: https://arxiv.org/abs/2103.00948

        • Code: None


        Deepfake檢測(Deepfake Detection)

        Spatial-Phase Shallow Learning: Rethinking Face Forgery Detection in Frequency Domain

        • Paper:https://arxiv.org/abs/2103.01856

        • Code: None

        Multi-attentional Deepfake Detection

        • Paper:https://arxiv.org/abs/2103.02406

        • Code: None


        人臉年齡估計(jì)(Age Estimation)

        PML: Progressive Margin Loss for Long-tailed Age Classification

        • Paper: https://arxiv.org/abs/2103.02140

        • Code: None


        人體解析(Human Parsing)

        Differentiable Multi-Granularity Human Representation Learning for Instance-Aware Human Semantic Parsing

        • Paper: https://arxiv.org/abs/2103.04570

        • Code: https://github.com/tfzhou/MG-HumanParsing


        超分辨率(Super-Resolution)

        ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic

        • Paper: https://arxiv.org/abs/2103.04039

        • Code: https://github.com/Xiangtaokong/ClassSR

        AdderSR: Towards Energy Efficient Image Super-Resolution

        • Paper: https://arxiv.org/abs/2009.08891

        • Code: None


        圖像恢復(fù)(Image Restoration)

        Multi-Stage Progressive Image Restoration

        • Paper: https://arxiv.org/abs/2102.02808

        • Code: https://github.com/swz30/MPRNet


        3D目標(biāo)檢測(3D Object Detection)

        SE-SSD: Self-Ensembling Single-Stage Object Detector From Point Cloud

        • Paper: None

        • Code: https://github.com/Vegeta2020/SE-SSD

        Center-based 3D Object Detection and Tracking

        • Paper: https://arxiv.org/abs/2006.11275

        • Code: https://github.com/tianweiy/CenterPoint

        Categorical Depth Distribution Network for Monocular 3D Object Detection

        • Paper: https://arxiv.org/abs/2103.01100

        • Code: None


        3D語義分割(3D Semantic Segmentation)

        Towards Semantic Segmentation of Urban-Scale 3D Point Clouds: A Dataset, Benchmarks and Challenges

        • Homepage: https://github.com/QingyongHu/SensatUrban

        • Paper: http://arxiv.org/abs/2009.03137

        • Code: https://github.com/QingyongHu/SensatUrban

        • Dataset: https://github.com/QingyongHu/SensatUrban


        3D目標(biāo)跟蹤(3D Object Trancking)

        Center-based 3D Object Detection and Tracking

        • Paper: https://arxiv.org/abs/2006.11275

        • Code: https://github.com/tianweiy/CenterPoint


        3D點(diǎn)云配準(zhǔn)(3D Point Cloud Registration)

        PREDATOR: Registration of 3D Point Clouds with Low Overlap

        • Paper: https://arxiv.org/abs/2011.13005

        • Code: https://github.com/ShengyuH/OverlapPredator


        6D位姿估計(jì)(6D Pose Estimation)

        FFB6D: A Full Flow Bidirectional Fusion Network for 6D Pose Estimation

        • Paper: https://arxiv.org/abs/2103.02242

        • Code: https://github.com/ethnhe/FFB6D


        深度估計(jì)

        Depth from Camera Motion and Object Detection

        • Paper: https://arxiv.org/abs/2103.01468

        • Code: https://github.com/griffbr/ODMD

        • Dataset: https://github.com/griffbr/ODMD


        對(duì)抗樣本

        Natural Adversarial Examples

        • Paper: https://arxiv.org/abs/1907.07174

        • Code: https://github.com/hendrycks/natural-adv-examples


        圖像檢索(Image Retrieval)

        QAIR: Practical Query-efficient Black-Box Attacks for Image Retrieval

        • Paper: https://arxiv.org/abs/2103.02927

        • Code: None


        Zero-Shot Learning

        Counterfactual Zero-Shot and Open-Set Visual Recognition

        • Paper: https://arxiv.org/abs/2103.00887

        • Code: https://github.com/yue-zhongqi/gcm-cf


        視覺推理(Visual Reasoning)

        Transformation Driven Visual Reasoning

        • homepage: https://hongxin2019.github.io/TVR/

        • Paper: https://arxiv.org/abs/2011.13160

        • Code: https://github.com/hughplay/TVR


        "人-物"交互(HOI)檢測

        End-to-End Human Object Interaction Detection with HOI Transformer

        • Paper: https://arxiv.org/abs/2103.04503

        • Code: https://github.com/bbepoch/HoiTransformer


        陰影去除(Shadow Removal)

        Auto-Exposure Fusion for Single-Image Shadow Removal

        • Paper: https://arxiv.org/abs/2103.01255

        • Code: https://github.com/tsingqguo/exposure-fusion-shadow-removal


        數(shù)據(jù)集(Datasets)

        Nutrition5k: Towards Automatic Nutritional Understanding of Generic Food

        • Paper: https://arxiv.org/abs/2103.03375

        • Dataset: None

        Towards Semantic Segmentation of Urban-Scale 3D Point Clouds: A Dataset, Benchmarks and Challenges

        • Homepage: https://github.com/QingyongHu/SensatUrban

        • Paper: http://arxiv.org/abs/2009.03137

        • Code: https://github.com/QingyongHu/SensatUrban

        • Dataset: https://github.com/QingyongHu/SensatUrban

        When Age-Invariant Face Recognition Meets Face Age Synthesis: A Multi-Task Learning Framework

        • Paper(Oral): https://arxiv.org/abs/2103.01520

        • Code: https://github.com/Hzzone/MTLFace

        • Dataset: https://github.com/Hzzone/MTLFace

        Depth from Camera Motion and Object Detection

        • Paper: https://arxiv.org/abs/2103.01468

        • Code: https://github.com/griffbr/ODMD

        • Dataset: https://github.com/griffbr/ODMD

        There is More than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking with Sound by Distilling Multimodal Knowledge

        • Homepage: http://rl.uni-freiburg.de/research/multimodal-distill

        • Paper: https://arxiv.org/abs/2103.01353

        • Code: http://rl.uni-freiburg.de/research/multimodal-distill

        Scan2Cap: Context-aware Dense Captioning in RGB-D Scans

        • Paper: https://arxiv.org/abs/2012.02206

        • Code: https://github.com/daveredrum/Scan2Cap

        • Dataset: https://github.com/daveredrum/ScanRefer

        There is More than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking with Sound by Distilling Multimodal Knowledge

        • Paper: https://arxiv.org/abs/2103.01353

        • Code: http://rl.uni-freiburg.de/research/multimodal-distill

        • Dataset: http://rl.uni-freiburg.de/research/multimodal-distill


        其他(Others)

        Knowledge Evolution in Neural Networks

        • Paper(Oral): https://arxiv.org/abs/2103.05152

        • Code: https://github.com/ahmdtaha/knowledge_evolution

        Multi-institutional Collaborations for Improving Deep Learning-based Magnetic Resonance Image Reconstruction Using Federated Learning

        • Paper: https://arxiv.org/abs/2103.02148

        • Code: https://github.com/guopengf/FLMRCM

        SGP: Self-supervised Geometric Perception

        • Oral

        • Paper: https://arxiv.org/abs/2103.03114

        • Code: https://github.com/theNded/SGP

        Multi-institutional Collaborations for Improving Deep Learning-based Magnetic Resonance Image Reconstruction Using Federated Learning

        • Paper: https://arxiv.org/abs/2103.02148

        • Code: https://github.com/guopengf/FLMRCM

        Diffusion Probabilistic Models for 3D Point Cloud Generation

        • Paper: https://arxiv.org/abs/2103.01458

        • Code: https://github.com/luost26/diffusion-point-cloud

        Scan2Cap: Context-aware Dense Captioning in RGB-D Scans

        • Paper: https://arxiv.org/abs/2012.02206

        • Code: https://github.com/daveredrum/Scan2Cap

        • Dataset: https://github.com/daveredrum/ScanRefer

        There is More than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking with Sound by Distilling Multimodal Knowledge

        • Paper: https://arxiv.org/abs/2103.01353

        • Code: http://rl.uni-freiburg.de/research/multimodal-distill

        • Dataset: http://rl.uni-freiburg.de/research/multimodal-distill


        不確定中沒中(Not Sure)

        CT Film Recovery via Disentangling Geometric Deformation and Photometric Degradation: Simulated Datasets and Deep Models

        • Paper: none

        • Code: https://github.com/transcendentsky/Film-Recovery

        Toward Explainable Reflection Removal with Distilling and Model Uncertainty

        • Paper: none

        • Code: https://github.com/ytpeng-aimlab/CVPR-2021-Toward-Explainable-Reflection-Removal-with-Distilling-and-Model-Uncertainty

        DeepOIS: Gyroscope-Guided Deep Optical Image Stabilizer Compensation

        • Paper: none

        • Code: https://github.com/lhaippp/DeepOIS

        Exploring Adversarial Fake Images on Face Manifold

        • Paper: none

        • Code: https://github.com/ldz666666/Style-atk

        Uncertainty-Aware Semi-Supervised Crowd Counting via Consistency-Regularized Surrogate Task

        • Paper: none

        • Code: https://github.com/yandamengdanai/Uncertainty-Aware-Semi-Supervised-Crowd-Counting-via-Consistency-Regularized-Surrogate-Task

        Temporal Contrastive Graph for Self-supervised Video Representation Learning

        • Paper: none

        • Code: https://github.com/YangLiu9208/TCG

        Boosting Monocular Depth Estimation Models to High-Resolution via Context-Aware Patching

        • Paper: none

        • Code: https://github.com/ouranonymouscvpr/cvpr2021_ouranonymouscvpr

        Fast and Memory-Efficient Compact Bilinear Pooling

        • Paper: none

        • Code: https://github.com/cvpr2021kp2/cvpr2021kp2

        Identification of Empty Shelves in Supermarkets using Domain-inspired Features with Structural Support Vector Machine

        • Paper: none

        • Code: https://github.com/gapDetection/cvpr2021

        Estimating A Child's Growth Potential From Cephalometric X-Ray Image via Morphology-Aware Interactive Keypoint Estimation

        • Paper: none

        • Code: https://github.com/interactivekeypoint2020/Morph

        https://github.com/ShaoQiangShen/CVPR2021

        https://github.com/gillesflash/CVPR2021

        https://github.com/anonymous-submission1991/BaLeNAS

        https://github.com/cvpr2021dcb/cvpr2021dcb

        https://github.com/anonymousauthorCV/CVPR2021_PaperID_8578

        https://github.com/AldrichZeng/FreqPrune

        https://github.com/Anonymous-AdvCAM/Anonymous-AdvCAM

        https://github.com/ddfss/datadrive-fss




        閱讀過本文的人還看了以下文章:


        TensorFlow 2.0深度學(xué)習(xí)案例實(shí)戰(zhàn)


        基于40萬表格數(shù)據(jù)集TableBank,用MaskRCNN做表格檢測


        《基于深度學(xué)習(xí)的自然語言處理》中/英PDF


        Deep Learning 中文版初版-周志華團(tuán)隊(duì)


        【全套視頻課】最全的目標(biāo)檢測算法系列講解,通俗易懂!


        《美團(tuán)機(jī)器學(xué)習(xí)實(shí)踐》_美團(tuán)算法團(tuán)隊(duì).pdf


        《深度學(xué)習(xí)入門:基于Python的理論與實(shí)現(xiàn)》高清中文PDF+源碼


        特征提取與圖像處理(第二版).pdf


        python就業(yè)班學(xué)習(xí)視頻,從入門到實(shí)戰(zhàn)項(xiàng)目


        2019最新《PyTorch自然語言處理》英、中文版PDF+源碼


        《21個(gè)項(xiàng)目玩轉(zhuǎn)深度學(xué)習(xí):基于TensorFlow的實(shí)踐詳解》完整版PDF+附書代碼


        《深度學(xué)習(xí)之pytorch》pdf+附書源碼


        PyTorch深度學(xué)習(xí)快速實(shí)戰(zhàn)入門《pytorch-handbook》


        【下載】豆瓣評(píng)分8.1,《機(jī)器學(xué)習(xí)實(shí)戰(zhàn):基于Scikit-Learn和TensorFlow》


        《Python數(shù)據(jù)分析與挖掘?qū)崙?zhàn)》PDF+完整源碼


        汽車行業(yè)完整知識(shí)圖譜項(xiàng)目實(shí)戰(zhàn)視頻(全23課)


        李沐大神開源《動(dòng)手學(xué)深度學(xué)習(xí)》,加州伯克利深度學(xué)習(xí)(2019春)教材


        筆記、代碼清晰易懂!李航《統(tǒng)計(jì)學(xué)習(xí)方法》最新資源全套!


        《神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)》最新2018版中英PDF+源碼


        將機(jī)器學(xué)習(xí)模型部署為REST API


        FashionAI服裝屬性標(biāo)簽圖像識(shí)別Top1-5方案分享


        重要開源!CNN-RNN-CTC 實(shí)現(xiàn)手寫漢字識(shí)別


        yolo3 檢測出圖像中的不規(guī)則漢字


        同樣是機(jī)器學(xué)習(xí)算法工程師,你的面試為什么過不了?


        前海征信大數(shù)據(jù)算法:風(fēng)險(xiǎn)概率預(yù)測


        【Keras】完整實(shí)現(xiàn)‘交通標(biāo)志’分類、‘票據(jù)’分類兩個(gè)項(xiàng)目,讓你掌握深度學(xué)習(xí)圖像分類


        VGG16遷移學(xué)習(xí),實(shí)現(xiàn)醫(yī)學(xué)圖像識(shí)別分類工程項(xiàng)目


        特征工程(一)


        特征工程(二) :文本數(shù)據(jù)的展開、過濾和分塊


        特征工程(三):特征縮放,從詞袋到 TF-IDF


        特征工程(四): 類別特征


        特征工程(五): PCA 降維


        特征工程(六): 非線性特征提取和模型堆疊


        特征工程(七):圖像特征提取和深度學(xué)習(xí)


        如何利用全新的決策樹集成級(jí)聯(lián)結(jié)構(gòu)gcForest做特征工程并打分?


        Machine Learning Yearning 中文翻譯稿


        螞蟻金服2018秋招-算法工程師(共四面)通過


        全球AI挑戰(zhàn)-場景分類的比賽源碼(多模型融合)


        斯坦福CS230官方指南:CNN、RNN及使用技巧速查(打印收藏)


        python+flask搭建CNN在線識(shí)別手寫中文網(wǎng)站


        中科院Kaggle全球文本匹配競賽華人第1名團(tuán)隊(duì)-深度學(xué)習(xí)與特征工程



        不斷更新資源

        深度學(xué)習(xí)、機(jī)器學(xué)習(xí)、數(shù)據(jù)分析、python

         搜索公眾號(hào)添加: datayx  



        機(jī)大數(shù)據(jù)技術(shù)與機(jī)器學(xué)習(xí)工程

         搜索公眾號(hào)添加: datanlp

        長按圖片,識(shí)別二維碼


        瀏覽 145
        點(diǎn)贊
        評(píng)論
        收藏
        分享

        手機(jī)掃一掃分享

        分享
        舉報(bào)
        評(píng)論
        圖片
        表情
        推薦
        點(diǎn)贊
        評(píng)論
        收藏
        分享

        手機(jī)掃一掃分享

        分享
        舉報(bào)
          
          

            1. 夏目あきら被续侵犯7天 | 张开腿让我尿在里面(h) | 久久三级片成年人 | 啊啊好爽好舒服 | 成人做爰www免费网址 |