1. 【Python】簡(jiǎn)約而不簡(jiǎn)單|值得收藏的Numpy小抄表(含主要語(yǔ)法、代碼)

        共 10583字,需瀏覽 22分鐘

         ·

        2021-08-15 11:58

        Numpy是一個(gè)用python實(shí)現(xiàn)的科學(xué)計(jì)算的擴(kuò)展程序庫(kù),包括:

        • 1、一個(gè)強(qiáng)大的N維數(shù)組對(duì)象Array;

        • 2、比較成熟的(廣播)函數(shù)庫(kù);

        • 3、用于整合C/C++和Fortran代碼的工具包;

        • 4、實(shí)用的線性代數(shù)、傅里葉變換和隨機(jī)數(shù)生成函數(shù)。numpy和稀疏矩陣運(yùn)算包scipy配合使用更加方便。

        NumPy(Numeric Python)提供了許多高級(jí)的數(shù)值編程工具,如:矩陣數(shù)據(jù)類(lèi)型、矢量處理,以及精密的運(yùn)算庫(kù)。專(zhuān)為進(jìn)行嚴(yán)格的數(shù)字處理而產(chǎn)生。多為很多大型金融公司使用,以及核心的科學(xué)計(jì)算組織如:Lawrence Livermore,NASA用其處理一些本來(lái)使用C++,F(xiàn)ortran或Matlab等所做的任務(wù)。

        本文整理了一個(gè)Numpy的小抄表,總結(jié)了Numpy的常用操作,可以收藏慢慢看。

        安裝Numpy

        可以通過(guò) Pip 或者 Anaconda安裝Numpy:

        $ pip install numpy

        $ conda install numpy

        本文目錄

        1. 基礎(chǔ)
          • 占位符
        2. 數(shù)組
          • 增加或減少元素
          • 合并數(shù)組
          • 分割數(shù)組
          • 數(shù)組形狀變化

          • 拷貝 /排序

          • 數(shù)組操作
          • 其他
        3. 數(shù)學(xué)計(jì)算
          • 數(shù)學(xué)計(jì)算
          • 比較
          • 基礎(chǔ)統(tǒng)計(jì)
          • 更多
        4. 切片和子集
        5. 小技巧

        基礎(chǔ)

        NumPy最常用的功能之一就是NumPy數(shù)組:列表和NumPy數(shù)組的最主要區(qū)別在于功能性和速度。

        列表提供基本操作,但NumPy添加了FTTs、卷積、快速搜索、基本統(tǒng)計(jì)、線性代數(shù)、直方圖等。

        兩者數(shù)據(jù)科學(xué)最重要的區(qū)別是能夠用NumPy數(shù)組進(jìn)行元素級(jí)計(jì)算。

        axis 0 通常指行

        axis 1 通常指列

        操作描述文檔
        np.array([1,2,3])一維數(shù)組https://numpy.org/doc/stable/reference/generated/numpy.array.html#numpy.array
        np.array([(1,2,3),(4,5,6)])二維數(shù)組https://numpy.org/doc/stable/reference/generated/numpy.array.html#numpy.array
        np.arange(start,stop,step)等差數(shù)組https://docs.scipy.org/doc/numpy/reference/generated/numpy.arange.html

        占位符

        操作描述文檔
        np.linspace(0,2,9)數(shù)組中添加等差的值https://docs.scipy.org/doc/numpy/reference/generated/numpy.linspace.html
        np.zeros((1,2))創(chuàng)建全0數(shù)組docs.scipy.org/doc/numpy/reference/generated/numpy.zeros.html
        np.ones((1,2))創(chuàng)建全1數(shù)組https://docs.scipy.org/doc/numpy/reference/generated/numpy.ones.html#numpy.ones
        np.random.random((5,5))創(chuàng)建隨機(jī)數(shù)的數(shù)組https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.random.html
        np.empty((2,2))創(chuàng)建空數(shù)組https://numpy.org/doc/stable/reference/generated/numpy.empty.html

        舉例:

        import numpy as np
        # 1 dimensionalx = np.array([1,2,3])# 2 dimensionaly = np.array([(1,2,3),(4,5,6)])
        x = np.arange(3)>>> array([0, 1, 2])
        y = np.arange(3.0)>>> array([ 0., 1., 2.])
        x = np.arange(3,7)>>> array([3, 4, 5, 6])
        y = np.arange(3,7,2)>>> array([3, 5])

        數(shù)組屬性

        數(shù)組屬性

        語(yǔ)法描述文檔
        array.shape維度(行,列)https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.shape.html
        len(array)數(shù)組長(zhǎng)度https://docs.python.org/3.5/library/functions.html#len
        array.ndim數(shù)組的維度數(shù)https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.ndim.html
        array.size數(shù)組的元素?cái)?shù)https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.size.html
        array.dtype數(shù)據(jù)類(lèi)型https://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html
        array.astype(type)轉(zhuǎn)換數(shù)組類(lèi)型https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.astype.html
        type(array)顯示數(shù)組類(lèi)型https://numpy.org/doc/stable/user/basics.types.html

        拷貝 /排序

        操作描述文檔
        np.copy(array)創(chuàng)建數(shù)組拷貝https://docs.scipy.org/doc/numpy/reference/generated/numpy.copy.html
        other = array.copy()創(chuàng)建數(shù)組深拷貝https://docs.scipy.org/doc/numpy/reference/generated/numpy.copy.html
        array.sort()排序一個(gè)數(shù)組https://docs.scipy.org/doc/numpy/reference/generated/numpy.sort.html
        array.sort(axis=0)按照指定軸排序一個(gè)數(shù)組https://docs.scipy.org/doc/numpy/reference/generated/numpy.sort.html

        舉例

        import numpy as np# Sort sorts in ascending ordery = np.array([10, 9, 8, 7, 6, 5, 4, 3, 2, 1])y.sort()print(y)>>> [ 1  2  3  4  5  6  7  8  9  10]

        數(shù)組操作例程

        增加或減少元素

        操作描述文檔
        np.append(a,b)增加數(shù)據(jù)項(xiàng)到數(shù)組https://docs.scipy.org/doc/numpy/reference/generated/numpy.append.html
        np.insert(array, 1, 2, axis)沿著數(shù)組0軸或者1軸插入數(shù)據(jù)項(xiàng)https://docs.scipy.org/doc/numpy/reference/generated/numpy.insert.html
        np.resize((2,4))將數(shù)組調(diào)整為形狀(2,4)https://docs.scipy.org/doc/numpy/reference/generated/numpy.resize.html
        np.delete(array,1,axis)從數(shù)組里刪除數(shù)據(jù)項(xiàng)https://numpy.org/doc/stable/reference/generated/numpy.delete.html

        舉例

        import numpy as np# Append items to arraya = np.array([(1, 2, 3),(4, 5, 6)])b = np.append(a, [(7, 8, 9)])print(b)>>> [1 2 3 4 5 6 7 8 9]
        # Remove index 2 from previous arrayprint(np.delete(b, 2))>>> [1 2 4 5 6 7 8 9]

        組合數(shù)組

        操作描述文檔
        np.concatenate((a,b),axis=0)連接2個(gè)數(shù)組,添加到末尾https://docs.scipy.org/doc/numpy/reference/generated/numpy.concatenate.html
        np.vstack((a,b))按照行堆疊數(shù)組https://numpy.org/doc/stable/reference/generated/numpy.vstack.html
        np.hstack((a,b))按照列堆疊數(shù)組docs.scipy.org/doc/numpy/reference/generated/numpy.hstack.html#numpy.hstack

        舉例

        import numpy as npa = np.array([1, 3, 5])b = np.array([2, 4, 6])
        # Stack two arrays row-wiseprint(np.vstack((a,b)))>>> [[1 3 5] [2 4 6]]
        # Stack two arrays column-wiseprint(np.hstack((a,b)))>>> [1 3 5 2 4 6]

        分割數(shù)組

        操作描述文檔
        numpy.split()分割數(shù)組
        https://docs.scipy.org/doc/numpy/reference/generated/numpy.split.html
        np.array_split(array, 3)將數(shù)組拆分為大?。◣缀酰┫嗤淖訑?shù)組https://docs.scipy.org/doc/numpy/reference/generated/numpy.array_split.html#numpy.array_split
        numpy.hsplit(array, 3)在第3個(gè)索引處水平拆分?jǐn)?shù)組
        https://numpy.org/doc/stable/reference/generated/numpy.hsplit.html#numpy.hsplit

        舉例

        # Split array into groups of ~3a = np.array([1, 2, 3, 4, 5, 6, 7, 8])print(np.array_split(a, 3))>>> [array([1, 2, 3]), array([4, 5, 6]), array([7, 8])]

        數(shù)組形狀變化

        操作
        操作描述文檔
        other = ndarray.flatten()平鋪一個(gè)二維數(shù)組到一維數(shù)組https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flatten.html
        numpy.flip()翻轉(zhuǎn)一維數(shù)組中元素的順序https://docs.scipy.org/doc/stable/reference/generated/numpy.flip.html
        np.ndarray[::-1]翻轉(zhuǎn)一維數(shù)組中元素的順序
        reshape改變數(shù)組的維數(shù)https://docs.scipy.org/doc/stable/reference/generated/numpy.reshape.html
        squeeze從數(shù)組的形狀中刪除單維度條目https://numpy.org/doc/stable/reference/generated/numpy.squeeze.html
        expand_dims擴(kuò)展數(shù)組維度
        https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.expand_dims.html

        其他

        操作描述文檔
        other = ndarray.flatten()平鋪2維數(shù)組到1維數(shù)組https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flatten.html
        array = np.transpose(other)
        array.T
        數(shù)組轉(zhuǎn)置https://numpy.org/doc/stable/reference/generated/numpy.transpose.html
        inverse = np.linalg.inv(matrix)求矩陣的逆矩陣https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.inv.html

        舉例

        # Find inverse of a given matrix>>> np.linalg.inv([[3,1],[2,4]])array([[ 0.4, -0.1],       [-0.2,  0.3]])

        數(shù)學(xué)計(jì)算

        操作

        操作描述文檔
        np.add(x,y)
        x + y
        https://docs.scipy.org/doc/numpy/reference/generated/numpy.add.html
        np.substract(x,y)
        x - y
        https://docs.scipy.org/doc/numpy/reference/generated/numpy.subtract.html#numpy.subtract
        np.divide(x,y)
        x / y
        https://docs.scipy.org/doc/numpy/reference/generated/numpy.divide.html#numpy.divide
        np.multiply(x,y)
        x @ y
        https://docs.scipy.org/doc/numpy/reference/generated/numpy.multiply.html#numpy.multiply
        np.sqrt(x)平方根https://docs.scipy.org/doc/numpy/reference/generated/numpy.sqrt.html#numpy.sqrt
        np.sin(x)元素正弦https://docs.scipy.org/doc/numpy/reference/generated/numpy.sin.html#numpy.sin
        np.cos(x)元素余弦https://docs.scipy.org/doc/numpy/reference/generated/numpy.cos.html#numpy.cos
        np.log(x)元素自然對(duì)數(shù)https://docs.scipy.org/doc/numpy/reference/generated/numpy.log.html#numpy.log
        np.dot(x,y)點(diǎn)積https://docs.scipy.org/doc/numpy/reference/generated/numpy.dot.html
        np.roots([1,0,-4])給定多項(xiàng)式系數(shù)的根https://docs.scipy.org/doc/numpy/reference/generated/numpy.roots.html

        舉例

        # If a 1d array is added to a 2d array (or the other way), NumPy# chooses the array with smaller dimension and adds it to the one# with bigger dimensiona = np.array([1, 2, 3])b = np.array([(1, 2, 3), (4, 5, 6)])print(np.add(a, b))>>> [[2 4 6]     [5 7 9]]     # Example of np.roots# Consider a polynomial function (x-1)^2 = x^2 - 2*x + 1# Whose roots are 1,1>>> np.roots([1,-2,1])array([1., 1.])# Similarly x^2 - 4 = 0 has roots as x=±2>>> np.roots([1,0,-4])array([-2.,  2.])

        比較

        操作描述文檔
        ==等于https://docs.python.org/2/library/stdtypes.html
        !=不等于
        https://docs.python.org/2/library/stdtypes.html
        <小于https://docs.python.org/2/library/stdtypes.html
        >大于https://docs.python.org/2/library/stdtypes.html
        <=小于等于https://docs.python.org/2/library/stdtypes.html
        >=大于等于https://docs.python.org/2/library/stdtypes.html
        np.array_equal(x,y)數(shù)組比較https://numpy.org/doc/stable/reference/generated/numpy.array_equal.html

        舉例:

        # Using comparison operators will create boolean NumPy arraysz = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])c = z < 6print(c)>>> [ True  True  True  True  True False False False False False]

        基本的統(tǒng)計(jì)

        操作描述文檔
        np.mean(array)Meanhttps://numpy.org/doc/stable/reference/generated/numpy.mean.html#numpy.mean
        np.median(array)Medianhttps://numpy.org/doc/stable/reference/generated/numpy.median.html#numpy.median
        array.corrcoef()Correlation Coefficienthttps://numpy.org/doc/stable/reference/generated/numpy.corrcoef.html#numpy.corrcoef
        np.std(array)Standard Deviationhttps://docs.scipy.org/doc/numpy/reference/generated/numpy.std.html#numpy.std

        舉例

        # Statistics of an arraya = np.array([1, 1, 2, 5, 8, 10, 11, 12])
        # Standard deviationprint(np.std(a))>>> 4.2938910093294167
        # Medianprint(np.median(a))>>> 6.5

        更多

        操作描述文檔
        array.sum()數(shù)組求和https://numpy.org/doc/stable/reference/generated/numpy.sum.html
        array.min()數(shù)組求最小值https://numpy.org/doc/stable/reference/generated/numpy.ndarray.min.html
        array.max(axis=0)數(shù)組求最大值(沿著0軸)
        array.cumsum(axis=0)指定軸求累計(jì)和https://numpy.org/doc/stable/reference/generated/numpy.cumsum.html

        切片和子集

        操作描述文檔
        array[i]索引i處的一維數(shù)組https://numpy.org/doc/stable/reference/arrays.indexing.html
        array[i,j]索引在[i][j]處的二維數(shù)組https://numpy.org/doc/stable/reference/arrays.indexing.html
        array[i<4]布爾索引https://numpy.org/doc/stable/reference/arrays.indexing.html
        array[0:3]選擇索引為 0, 1和 2https://numpy.org/doc/stable/reference/arrays.indexing.html
        array[0:2,1]選擇第0,1行,第1列https://numpy.org/doc/stable/reference/arrays.indexing.html
        array[:1]選擇第0行數(shù)據(jù)項(xiàng) (與[0:1, :]相同)https://numpy.org/doc/stable/reference/arrays.indexing.html
        array[1:2, :]選擇第1行https://numpy.org/doc/stable/reference/arrays.indexing.html
        [comment]: <> "array[1,...]等同于 array[1,:,:]
        array[ : :-1]反轉(zhuǎn)數(shù)組同上

        舉例

        b = np.array([(1, 2, 3), (4, 5, 6)])
        # The index *before* the comma refers to *rows*,# the index *after* the comma refers to *columns*print(b[0:1, 2])>>> [3]
        print(b[:len(b), 2])>>> [3 6]
        print(b[0, :])>>> [1 2 3]
        print(b[0, 2:])>>> [3]
        print(b[:, 0])>>> [1 4]
        c = np.array([(1, 2, 3), (4, 5, 6)])d = c[1:2, 0:2]print(d)>>> [[4 5]]

        切片舉例

        import numpy as npa1 = np.arange(0, 6)a2 = np.arange(10, 16)a3 = np.arange(20, 26)a4 = np.arange(30, 36)a5 = np.arange(40, 46)a6 = np.arange(50, 56)a = np.vstack((a1, a2, a3, a4, a5, a6))
        生成矩陣和切片圖示


        技巧

        例子將會(huì)越來(lái)越多的,歡迎大家提交。

        布爾索引 

        # Index trick when working with two np-arraysa = np.array([1,2,3,6,1,4,1])b = np.array([5,6,7,8,3,1,2])
        # Only saves a at index where b == 1other_a = a[b == 1]#Saves every spot in a except at index where b != 1other_other_a = a[b != 1]
        import numpy as npx = np.array([4,6,8,1,2,6,9])y = x > 5print(x[y])>>> [6 8 6 9]
        # Even shorterx = np.array([1, 2, 3, 4, 4, 35, 212, 5, 5, 6])print(x[x < 5])>>> [1 2 3 4 4]
        【參考】

        https://github.com/juliangaal/python-cheat-sheet

        往期精彩回顧




        本站qq群851320808,加入微信群請(qǐng)掃碼:
        瀏覽 56
        點(diǎn)贊
        評(píng)論
        收藏
        分享

        手機(jī)掃一掃分享

        分享
        舉報(bào)
        評(píng)論
        圖片
        表情
        推薦
        點(diǎn)贊
        評(píng)論
        收藏
        分享

        手機(jī)掃一掃分享

        分享
        舉報(bào)
          
          

            1. 久久国产福利国产秒拍 | 区二区区别88888金三角 操逼网址视频 | 操丝袜骚逼 | 热久久999 | 嗯~宝贝胸罩脱了让我揉你的胸 |