scATAC-seq建庫原理,質控方法和新R包Signac的使用
生物信息學習的正確姿勢
NGS系列文章包括NGS基礎、在線繪圖、轉錄組分析?(Nature重磅綜述|關于RNA-seq你想知道的全在這)、ChIP-seq分析?(ChIP-seq基本分析流程)、單細胞測序分析?(重磅綜述:三萬字長文讀懂單細胞RNA測序分析的最佳實踐教程)、DNA甲基化分析、重測序分析、GEO數據挖掘(典型醫(yī)學設計實驗GEO數據分析 (step-by-step))、批次效應處理等內容。
ATAC-seq即transposase-accessible chromatin using sequencing,是一種檢測染色體開放區(qū)域的技術。該方法由斯坦福大學Greenleaf實驗室在2013年首次發(fā)表[1],兩年后該實驗室又發(fā)表基于單細胞的ATAC-seq技術[2]。ATAC-seq相比于之前的FaiRE-seq和DNase-seq,ATAC-seq用Tn5轉座酶對染色體開放區(qū)域進行剪切,并加上adaptors序列(圖1的紅藍片段)。最后得到的DNA片段,包括了開放區(qū)域的剪切片段,以及橫跨一個或多個核小體的長片段。

圖1. ATAC-seq[1]
根據片段長度可以分為Fragments in nucleosome-free regions(<147 base pairs)和Fragments flanking a single nucleosome (147~294 base pairs), 以及更長的多核片段。片段長度分布如下圖,沒有跨越核小體的小片段最多,其次是單核片段,依次遞減。
? 圖2. DNA片段長度分布
scATAC-seq建庫原理
以10x 建庫方法為例[5],比較scATAC-seq 和scRNA-seq建庫方法的異同。
二者都用膠珠(GEMs)的方法,不一樣的是ATAC膠珠上的序列中不用UMI,因為基因組只有一對序列,無需像RNA一樣定量。另外序列末端用接頭引物Read 1N代替PolyT。
scRNA-seq通過結合cDNA的PolyA尾進行擴增,而scATAC-seq的DNA片段沒有PolyA尾,取而代之的是Tn5酶轉座剪切時插入的adaptors片段,可以與膠珠上的Read 1N序列互補。

DNA片段接上膠珠后,在另一端加Read2和Sample index序列。在此之前,scRNA-seq需要將cDNA酶切至合適的片段長度,而scATAC-seq的片段不進行打碎,接上Sample index和P7序列后進行擴增。

最后上機測序。scRNAseq如果是3‘單端測序,Read2讀取最近的100bp讀長,而Read1只讀取16bp的細胞barcode序列和10bp的UMI序列,共26bp。scATAC-seq則用雙末端測序,讀長一般不低于45bp[3]。
scATAC-seq最后可以得到4個原始文件:

其中I1/2分別是barcode和sample index,R1/2是目的片段的雙末端。
10x提供cellranger軟件對原始數據進行初步分析,如質控,比對,peak calling等。
$ cellranger-atac count --id=sample345 \
--reference=/opt/refdata-cellranger-atac-GRCh38-1.2.0 \
--fastqs=/home/jdoe/runs/HAWT7ADXX/outs/fastq_path \
--sample=mysample \
--localcores=8 \
--localmem=64質控方法
重要指標:
Fraction of fragments overlapping any targeted region
覆蓋注釋區(qū)域的片段比例。目標區(qū)域包括TSS,DNase HS,增強子和啟動子等。一般要求大于55%。Fraction of transposition events in peaks in cell barcodes
轉座位點位于peaks區(qū)域的比例。一般大于25%。如果比例過小,有可能是細胞狀態(tài)不好,或者測序深度不夠。Enrichment score of transcription start sites(TSS)
轉錄起始位點的標準化分數。閾值選擇根據基因組而定。人類一般選擇TSS分數大于5或者6的細胞樣本[3]。如果分數太低說明細胞染色質結構瓦解,或者實驗過程細胞裂解方式不當。

TSS標準化分數的計算方法不同,可能導致閾值偏差。10X的標準化方法是cut sites數除以最小值,而ENCODE的標準是在cut sites數除以兩個末端各100bp的cut site數的平均值。由于一般越靠近中間數值越大,ENCODE的標準化分數整體比10x的分數小一些。

其他指標:
Fraction of read pairs with a valid barcode > 75%; Q30 bases in R1 > 65%; Q30 bases in R2 > 65%; Q30 bases in barcode > 65%; Q30 bases in Sample Index > 90%; Estimated Number of Cells 500~10000 +- 20%; Median fragments per cell barcode > 500; Fragments in nucleosomefree regions >55%; Fraction of total read pairs mapped confidently to genome (>30 mapq) >80%; Fraction of total read pairs in mitochondria and in cell barcodes < 40%;
下游分析(以Signac為例)
Signac包由Seurat同一團隊開發(fā),獨立于Seurat包,在2020年8月開始發(fā)布在GitHub上。目前仍是1.0.0版本[4]。
我們可以用10x官網的PBMC數據做演示。
首先加載所需R包:
library(Signac)
library(Seurat)
library(GenomeInfoDb)
library(EnsDb.Hsapiens.v75)
library(ggplot2)
library(patchwork)
set.seed(1234)加載peaks, 細胞注釋和片段分布數據,并創(chuàng)建object。這個object和Seurat object類似,只是在assay里多了peaks等信息。
counts<-Read10X_h5(filename= "atac_v1_pbmc_10k_filtered_peak_bc_matrix.h5")
metadata <- read.csv(
file = "atac_v1_pbmc_10k_singlecell.csv",
header = TRUE,
row.names = 1
)
chrom_assay <- CreateChromatinAssay(
counts = counts,
sep = c(":", "-"),
genome = 'hg19',
fragments = 'atac_v1_pbmc_10k_fragments.tsv.gz',
min.cells = 10,
min.features = 200
)
pbmc <- CreateSeuratObject(
counts = chrom_assay,
assay = "peaks",
meta.data = metadata
)總共8728個細胞,87405個features。features不是基因,是基因組的注釋區(qū)域,如啟動子,增強子等。
pbmc[['peaks']]
## ChromatinAssay data with 87405 features for 8728 cells
## Variable features: 0
## Genome: hg19
## Annotation present: FALSE
## Motifs present: FALSE
## Fragment files: 1加載注釋:
extract gene annotations from EnsDb
annotations <- GetGRangesFromEnsDb(ensdb = EnsDb.Hsapiens.v75)
# change to UCSC style since the data was mapped to hg19
seqlevelsStyle(annotations) <- 'UCSC'
genome(annotations) <- "hg19"
# add the gene information to the object
Annotation(pbmc) <- annotationsTSS和blacklist比例計算。
# compute nucleosome signal score per cell
pbmc <- NucleosomeSignal(object = pbmc)
# compute TSS enrichment score per cell
pbmc <- TSSEnrichment(object = pbmc, fast = FALSE)
# add blacklist ratio and fraction of reads in peaks
pbmc$pct_reads_in_peaks <- pbmc$peak_region_fragments / pbmc$passed_filters * 100
pbmc$blacklist_ratio <- pbmc$blacklist_region_fragments / pbmc$peak_region_fragments
pbmc$high.tss <- ifelse(pbmc$TSS.enrichment > 2, 'High', 'Low')
TSSPlot(pbmc, group.by = 'high.tss') + NoLegend()
質控。Signac包用5個指標做過濾:
TSS富集分數,大于2;
blacklist比例,小于0.05;
纏繞核小體的片段與非核小體片段(< 147bp)的比例,小于4;
匹配peaks區(qū)域的片段比例,大于15%;
匹配peaks區(qū)域的片段數,大于3000,小于20000。

pbmc <- subset(
x = pbmc,
subset = peak_region_fragments > 3000 &
peak_region_fragments < 20000 &
pct_reads_in_peaks > 15 &
blacklist_ratio < 0.05 &
nucleosome_signal < 4 &
TSS.enrichment > 2
)
pbmc
## An object of class Seurat
## 87405 features across 7060 samples within 1 assay
## Active assay: peaks (87405 features, 0 variable features)降維聚類。
pbmc <- RunTFIDF(pbmc)
pbmc <- FindTopFeatures(pbmc, min.cutoff = 'q0')
pbmc <- RunSVD(pbmc)
pbmc <- RunUMAP(object = pbmc, reduction = 'lsi', dims = 2:30)
pbmc <- FindNeighbors(object = pbmc, reduction = 'lsi', dims = 2:30)
pbmc <- FindClusters(object = pbmc, verbose = FALSE, algorithm = 3)
DimPlot(object = pbmc, label = TRUE) + NoLegend()
創(chuàng)建基因活性矩陣。之前的聚類區(qū)域所用的features是peaks,為了展示不同分群基因活性的差異,首先要創(chuàng)建一個類似RNA表達的矩陣。用基因加上游2000bp區(qū)域的比對片段數代表該基因的活性。
gene.activities <- GeneActivity(pbmc)
# add the gene activity matrix to the Seurat object as a new assay and normalize it
pbmc[['RNA']] <- CreateAssayObject(counts = gene.activities)
pbmc <- NormalizeData(
object = pbmc,
assay = 'RNA',
normalization.method = 'LogNormalize',
scale.factor = median(pbmc$nCount_RNA)
)展示marker基因活性:
DefaultAssay(pbmc) <- 'RNA'
FeaturePlot(
object = pbmc,
features = c('MS4A1', 'CD3D', 'LEF1', 'NKG7', 'TREM1', 'LYZ'),
pt.size = 0.1,
max.cutoff = 'q95',
ncol = 3
)
與scRNA-seq數據的整合分析。單細胞轉錄組數據地址
# Load the pre-processed scRNA-seq data for PBMCs
pbmc_rna <- readRDS("/home/stuartt/github/chrom/vignette_data/pbmc_10k_v3.rds")
transfer.anchors <- FindTransferAnchors(
reference = pbmc_rna,
query = pbmc,
reduction = 'cca'
)
predicted.labels <- TransferData(
anchorset = transfer.anchors,
refdata = pbmc_rna$celltype,
weight.reduction = pbmc[['lsi']],
dims = 2:30
)
pbmc <- AddMetaData(object = pbmc, metadata = predicted.labels)
尋找細胞分群特異的peaks。
# change back to working with peaks instead of gene activities
DefaultAssay(pbmc) <- 'peaks'
da_peaks <- FindMarkers(
object = pbmc,
ident.1 = "CD4 Naive",
ident.2 = "CD14 Mono",
min.pct = 0.2,
test.use = 'LR',
latent.vars = 'peak_region_fragments'
)
plot1 <- VlnPlot(
object = pbmc,
features = rownames(da_peaks)[1],
pt.size = 0.1,
idents = c("CD4 Memory","CD14 Mono")
)
plot2 <- FeaturePlot(
object = pbmc,
features = rownames(da_peaks)[1],
pt.size = 0.1
)
plot1 | plot2
展示基因在不同細胞類型的開放程度:
# set plotting order
levels(pbmc) <- c("CD4 Naive","CD4 Memory","CD8 Naive","CD8 Effector","DN T","NK CD56bright","NK CD56Dim","pre-B",'pro-B',"pDC","DC","CD14 Mono",'CD16 Mono')
CoveragePlot(
object = pbmc,
region = rownames(da_peaks)[1],
extend.upstream = 40000,
extend.downstream = 20000
)
此外還有其他分析,如TF footprinting等。footprinting顧名思義是指轉錄因子留下的印記,由于Tn5酶不能剪切到TF結合的區(qū)域,所以footprinting圖相對與TSS圖,中間有“凹陷”,凹陷的程度根據TF結合的時間確定[6]。
總的來說,Signac包是一個親民實用的工具。雖然有一些不足的地方,如染色體的注釋目前只能選擇UCSC的,不能選Ensemble。
參考文獻:
[1]?Buenrostro, J., Giresi,?P., Zaba, L.?et al.?Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position.?Nat Methods?10,?1213–1218 (2013). https://doi.org/10.1038/nmeth.2688
[2]?Buenrostro, J., Wu, B., Litzenburger, U.?et al.?Single-cell chromatin accessibility reveals principles of regulatory variation.?Nature?523,?486–490 (2015).?https://doi.org/10.1038/nature14590
[3]?https://www.encodeproject.org/atac-seq/
[4]?https://satijalab.org/signac/index.html
[5]https://assets.ctfassets.net/an68im79xiti/Cts31zFxXFXVwJ1lzU3Pc/fe66343ffd3039de73ecee6a1a6f5b7b/CG000202_TechnicalNote_InterpretingCellRangerATACWebSummaryFiles_Rev-A.pdf
[6]?Sung, M., Baek, S. & Hager, G. Genome-wide footprinting: ready for prime time?.?Nat Methods?13,?222–228 (2016). https://doi.org/10.1038/nmeth.3766
往期精品(點擊圖片直達文字對應教程)
后臺回復“生信寶典福利第一波”或點擊閱讀原文獲取教程合集




























