1. <strong id="7actg"></strong>
    2. <table id="7actg"></table>

    3. <address id="7actg"></address>
      <address id="7actg"></address>
      1. <object id="7actg"><tt id="7actg"></tt></object>

        12個Pandas & Numpy函數(shù):數(shù)據(jù)分析提速50%不是問題!

        共 2498字,需瀏覽 5分鐘

         ·

        2020-07-31 11:04

        -?點擊上方?i小碼哥?設(shè)置?星標(biāo)不迷路!-


        我們都知道,Numpy 是 Python 環(huán)境下的擴展程序庫,支持大量的維度數(shù)組和矩陣運算;Pandas 也是 Python 環(huán)境下的數(shù)據(jù)操作和分析軟件包,以及強大的數(shù)據(jù)分析庫。二者在日常的數(shù)據(jù)分析中都發(fā)揮著重要作用,如果沒有 Numpy 和 Pandas 的支持,數(shù)據(jù)分析將變得異常困難。但有時我們需要加快數(shù)據(jù)分析的速度,有什么辦法可以幫助到我們嗎?


        在本文中,數(shù)據(jù)和分析工程師 Kunal Dhariwal 為我們介紹了 12 種 Numpy 和 Pandas 函數(shù),這些高效的函數(shù)會令數(shù)據(jù)分析更為容易、便捷。


        01

        Numpy 的 6 種高效函數(shù)


        首先從 Numpy 開始。Numpy 是用于科學(xué)計算的 Python 語言擴展包,通常包含強大的 N 維數(shù)組對象、復(fù)雜函數(shù)、用于整合 C/C++和 Fortran 代碼的工具以及有用的線性代數(shù)、傅里葉變換和隨機數(shù)生成能力。


        除了上面這些明顯的用途,Numpy 還可以用作通用數(shù)據(jù)的高效多維容器(container),定義任何數(shù)據(jù)類型。這使得 Numpy 能夠?qū)崿F(xiàn)自身與各種數(shù)據(jù)庫的無縫、快速集成。



        接下來一一解析 6 種 Numpy 函數(shù)。


        ?argpartition()?


        借助于 argpartition(),Numpy 可以找出 N 個最大數(shù)值的索引,也會將找到的這些索引輸出。然后我們根據(jù)需要對數(shù)值進(jìn)行排序。


        x = np.array([12, 10, 12, 0, 6, 8, 9, 1, 16, 4, 6, 0])index_val = np.argpartition(x, -4)[-4:]index_valarray([1, 8, 2, 0], dtype=int64)np.sort(x[index_val])array([10, 12, 12, 16])


        ?allclose()?


        allclose() 用于匹配兩個數(shù)組,并得到布爾值表示的輸出。如果在一個公差范圍內(nèi)(within a tolerance)兩個數(shù)組不等同,則 allclose() 返回 False。該函數(shù)對于檢查兩個數(shù)組是否相似非常有用。


        array1 = np.array([0.12,0.17,0.24,0.29])array2 = np.array([0.13,0.19,0.26,0.31])# with a tolerance of 0.1, it should return False:np.allclose(array1,array2,0.1)False# with a tolerance of 0.2, it should return True:np.allclose(array1,array2,0.2)True


        ?clip()?


        Clip() 使得一個數(shù)組中的數(shù)值保持在一個區(qū)間內(nèi)。有時,我們需要保證數(shù)值在上下限范圍內(nèi)。為此,我們可以借助 Numpy 的 clip() 函數(shù)實現(xiàn)該目的。給定一個區(qū)間,則區(qū)間外的數(shù)值被剪切至區(qū)間上下限(interval edge)。


        x = np.array([3, 17, 14, 23, 2, 2, 6, 8, 1, 2, 16, 0])np.clip(x,2,5)array([3, 5, 5, 5, 2, 2, 5, 5, 2, 2, 5, 2])


        ?extract()?


        顧名思義,extract() 是在特定條件下從一個數(shù)組中提取特定元素。借助于 extract(),我們還可以使用 and 和 or 等條件。


        # Random integersarray = np.random.randint(20, size=12)arrayarray([ 0,  1,  8, 19, 16, 18, 10, 11,  2, 13, 14,  3])#  Divide by 2 and check if remainder is 1cond = np.mod(array, 2)==1condarray([False,  True, False,  True, False, False, False,  True, False, True, False,  True])# Use extract to get the valuesnp.extract(cond, array)array([ 1, 19, 11, 13,  3])# Apply condition on extract directlynp.extract(((array < 3) | (array > 15)), array)array([ 0,  1, 19, 16, 18,  2])


        ?where()?


        Where() 用于從一個數(shù)組中返回滿足特定條件的元素。比如,它會返回滿足特定條件的數(shù)值的索引位置。Where() 與 SQL 中使用的 where condition 類似,如以下示例所示:


        y = np.array([1,5,6,8,1,7,3,6,9])# Where y is greater than 5, returns index positionnp.where(y>5)array([2, 3, 5, 7, 8], dtype=int64),)# First will replace the values that match the condition, # second will replace the values that does notnp.where(y>5, "Hit", "Miss")array(['Miss', 'Miss', 'Hit', 'Hit', 'Miss', 'Hit', 'Miss', 'Hit', 'Hit'],dtype=')


        ?percentile()?


        Percentile() 用于計算特定軸方向上數(shù)組元素的第 n 個百分位數(shù)。


        a = np.array([1,5,6,8,1,7,3,6,9])print("50th Percentile of a, axis = 0 : ",        np.percentile(a, 50, axis =0))50th Percentile of a, axis = 0 :  6.0b = np.array([[10, 7, 4], [3, 2, 1]])print("30th Percentile of b, axis = 0 : ",        np.percentile(b, 30, axis =0))30th Percentile of b, axis = 0 :  [5.1 3.5 1.9]


        這就是 Numpy 擴展包的 6 種高效函數(shù),相信會為你帶來幫助。接下來看一看 Pandas 數(shù)據(jù)分析庫的 6 種函數(shù)。


        02

        Pandas 數(shù)據(jù)統(tǒng)計包的 6 種高效函數(shù)


        Pandas 也是一個 Python 包,它提供了快速、靈活以及具有顯著表達(dá)能力的數(shù)據(jù)結(jié)構(gòu),旨在使處理結(jié)構(gòu)化 (表格化、多維、異構(gòu)) 和時間序列數(shù)據(jù)變得既簡單又直觀。



        Pandas 適用于以下各類數(shù)據(jù):

        • 具有異構(gòu)類型列的表格數(shù)據(jù),如 SQL 表或 Excel 表

        • 有序和無序 (不一定是固定頻率) 的時間序列數(shù)據(jù)

        • 帶有行/列標(biāo)簽的任意矩陣數(shù)據(jù)(同構(gòu)類型或者是異構(gòu)類型)

        • 其他任意形式的統(tǒng)計數(shù)據(jù)集。事實上,數(shù)據(jù)根本不需要標(biāo)記就可以放入 Pandas 結(jié)構(gòu)中


        Pandas 擅長處理的類型如下所示:

        • 容易處理浮點數(shù)據(jù)和非浮點數(shù)據(jù)中的 缺失數(shù)據(jù)(用 NaN 表示)

        • 大小可調(diào)整性: 可以從 DataFrame 或者更高維度的對象中插入或者是刪除列

        • 顯式數(shù)據(jù)可自動對齊: 對象可以顯式地對齊至一組標(biāo)簽內(nèi),或者用戶可以簡單地選擇忽略標(biāo)簽,使 Series、 DataFrame 等自動對齊數(shù)據(jù)

        • 靈活的分組功能,對數(shù)據(jù)集執(zhí)行拆分-應(yīng)用-合并等操作,對數(shù)據(jù)進(jìn)行聚合和轉(zhuǎn)換

        • 簡化將數(shù)據(jù)轉(zhuǎn)換為 DataFrame 對象的過程,而這些數(shù)據(jù)基本是 Python 和 NumPy 數(shù)據(jù)結(jié)構(gòu)中不規(guī)則、不同索引的數(shù)據(jù)

        • 基于標(biāo)簽的智能切片、索引以及面向大型數(shù)據(jù)集的子設(shè)定

        • 更加直觀地合并以及連接數(shù)據(jù)集

        • 更加靈活地重塑、轉(zhuǎn)置(pivot)數(shù)據(jù)集

        • 軸的分級標(biāo)記 (可能包含多個標(biāo)記)

        • 具有魯棒性的 IO 工具,用于從平面文件 (CSV 和 delimited)、 Excel 文件、數(shù)據(jù)庫中加在數(shù)據(jù),以及從 HDF5 格式中保存 / 加載數(shù)據(jù)

        • 時間序列的特定功能: 數(shù)據(jù)范圍的生成以及頻率轉(zhuǎn)換、移動窗口統(tǒng)計、數(shù)據(jù)移動和滯后等


        ?read_csv(nrows=n)?


        大多數(shù)人都會犯的一個錯誤是,在不需要.csv 文件的情況下仍會完整地讀取它。如果一個未知的.csv 文件有 10GB,那么讀取整個.csv 文件將會非常不明智,不僅要占用大量內(nèi)存,還會花很多時間。我們需要做的只是從.csv 文件中導(dǎo)入幾行,之后根據(jù)需要繼續(xù)導(dǎo)入。


        import ioimport requests# I am using this online data set just to make things easier for you guysurl = "https://raw.github.com/vincentarelbundock/Rdatasets/master/csv/datasets/AirPassengers.csv"s = requests.get(url).content# read only first 10 rowsdf = pd.read_csv(io.StringIO(s.decode('utf-8')),nrows=10 , index_col=0)


        ?map()?


        map() 函數(shù)根據(jù)相應(yīng)的輸入來映射 Series 的值。用于將一個 Series 中的每個值替換為另一個值,該值可能來自一個函數(shù)、也可能來自于一個 dict 或 Series。


        # create a dataframedframe = pd.DataFrame(np.random.randn(4, 3), columns=list('bde'), index=['India', 'USA', 'China', 'Russia'])#compute a formatted string from each floating point value in framechangefn = lambda x: '%.2f' % x# Make changes element-wisedframe['d'].map(changefn)


        ?apply()?


        apply() 允許用戶傳遞函數(shù),并將其應(yīng)用于 Pandas 序列中的每個值。


        # max minus mix lambda fnfn = lambda x: x.max() - x.min()# Apply this on dframe that we've just created abovedframe.apply(fn)


        ?isin()?


        lsin () 用于過濾數(shù)據(jù)幀。Isin () 有助于選擇特定列中具有特定(或多個)值的行。


        # Using the dataframe we created for read_csvfilter1 = df["value"].isin([112]) filter2 = df["time"].isin([1949.000000])df [filter1 & filter2]


        ?copy()?


        Copy () 函數(shù)用于復(fù)制 Pandas 對象。當(dāng)一個數(shù)據(jù)幀分配給另一個數(shù)據(jù)幀時,如果對其中一個數(shù)據(jù)幀進(jìn)行更改,另一個數(shù)據(jù)幀的值也將發(fā)生更改。為了防止這類問題,可以使用 copy () 函數(shù)。


        # creating sample series data = pd.Series(['India', 'Pakistan', 'China', 'Mongolia'])# Assigning issue that we facedata1= data# Change a valuedata1[0]='USA'# Also changes value in old dataframedata# To prevent that, we use# creating copy of series new = data.copy()# assigning new values new[1]='Changed value'# printing data print(new) print(data)


        ?select_dtypes()?


        select_dtypes() 的作用是,基于 dtypes 的列返回數(shù)據(jù)幀列的一個子集。這個函數(shù)的參數(shù)可設(shè)置為包含所有擁有特定數(shù)據(jù)類型的列,亦或者設(shè)置為排除具有特定數(shù)據(jù)類型的列。


        # We'll use the same dataframe that we used for read_csvframex =  df.select_dtypes(include="float64")# Returns only time column


        最后,pivot_table() 也是 Pandas 中一個非常有用的函數(shù)。如果對 pivot_table() 在 excel 中的使用有所了解,那么就非常容易上手了。


        # Create a sample dataframeschool = pd.DataFrame({'A': ['Jay', 'Usher', 'Nicky', 'Romero', 'Will'],       'B': ['Masters', 'Graduate', 'Graduate', 'Masters', 'Graduate'],       'C': [26, 22, 20, 23, 24]})# Lets create a pivot table to segregate students based on age and coursetable = pd.pivot_table(school, values ='A', index =['B', 'C'],                          columns =['B'], aggfunc = np.sum, fill_value="Not Available")
        table


        End.

        作者:Kunal Dhariwal

        來源:TowardsDataScience

        編譯:機器之心

        本文為轉(zhuǎn)載分享,如侵權(quán)請聯(lián)系后臺刪除

        零基礎(chǔ)學(xué) Python,請往看下嘛
        送價值 109 經(jīng)典 配套視頻課
        瀏覽 52
        點贊
        評論
        收藏
        分享

        手機掃一掃分享

        分享
        舉報
        評論
        圖片
        表情
        推薦
        點贊
        評論
        收藏
        分享

        手機掃一掃分享

        分享
        舉報
        1. <strong id="7actg"></strong>
        2. <table id="7actg"></table>

        3. <address id="7actg"></address>
          <address id="7actg"></address>
          1. <object id="7actg"><tt id="7actg"></tt></object>
            亚洲国产日韩一区无码精品久久久久 | 女教师夹震蛋上课被老师发现 | 天天干天天摸天天操 | 日韩国产一区二区在线观看 | 四虎精品乱轮 | 亚洲精品色婷婷 | freevideos性欧美 | free国产hd老熟bbw | 天堂在线观看av 99re6久热只有精品6在线直播 | 快点快点进去进去好爽 |