1. <strong id="7actg"></strong>
    2. <table id="7actg"></table>

    3. <address id="7actg"></address>
      <address id="7actg"></address>
      1. <object id="7actg"><tt id="7actg"></tt></object>

        AI大合集:優(yōu)秀組織、視頻、博客書籍、GitHub等等

        共 7604字,需瀏覽 16分鐘

         ·

        2020-10-20 09:06

        點(diǎn)擊上方AI算法與圖像處理”,選擇加"星標(biāo)"或“置頂”

        重磅干貨,第一時間送達(dá)

        來源:AIRX社區(qū)


        本部分資源內(nèi)容主要是國外的一些AI學(xué)習(xí)與開發(fā)內(nèi)容,包括AI組織,視頻課程,博客,書籍,YouTube頻道,Quora,Github,書籍推薦,會議,研究鏈接,教程等。



        組織機(jī)構(gòu)



        有一些著名的組織致力于推動AI研究與開發(fā)。


        1、OpenAI

        https://openai.com/


        2、DeepMind


        https://deepmind.com/


        3、Google Research


        https://research.googleblog.com/


        4、AWS AI

        https://aws.amazon.com/blogs/ai/


        5、微軟研究院

        https://www.microsoft.com/en-us/research/


        6、Facebook AI研究


        https://research.fb.com/category/facebook-ai-research-fair/


        7、百度研究

        http://research.baidu.com/


        8、IntelAI

        https://software.intel.com/en-us/ai


        9、AI2

        http://allenai.org/


        10、AI


        https://www.partnershiponai.org/



        視頻課程



        現(xiàn)在網(wǎng)上有大量的視頻課程和教程,其中很多都是免費(fèi)的,也有一些不錯的付費(fèi)選擇,但在本文中,我只列舉一些免費(fèi)內(nèi)容。


        1、Coursera-機(jī)器學(xué)習(xí)

        https://www.coursera.org/learn/machine-learning#syllabus


        2、Coursera —機(jī)器學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò)

        https://www.coursera.org/learn/neural-networks


        3、Udacity —機(jī)器學(xué)習(xí)入門

        https://classroom.udacity.com/courses/ud120


        4、Udacity —機(jī)器學(xué)習(xí)

        https://www.udacity.com/course/machine-learning--ud262


        5、Udacity —深度學(xué)習(xí)

        https://www.udacity.com/course/deep-learning--ud730


        6、機(jī)器學(xué)習(xí)

        https://www.youtube.com/playlist?list=PLD0F06AA0D2E8FFBA


        7、面向程序員的實(shí)用深度學(xué)習(xí)

        http://course.fast.ai/start.html


        8、Stanford—用于視覺識別的卷積神經(jīng)網(wǎng)絡(luò)

        https://www.youtube.com/watch?v=g-PvXUjD6qg&list=PLlJy-eBtNFt6EuMxFYRiNRS07MCWN5UIA


        9、Stanford—具有深度學(xué)習(xí)的自然語言處理

        https://www.youtube.com/playlist?list=PL3FW7Lu3i5Jsnh1rnUwq_TcylNr7EkRe6


        10、牛津大學(xué)深層自然語言處理課程

        https://github.com/oxford-cs-deepnlp-2017/lectures


        11、Python實(shí)用機(jī)器學(xué)習(xí)教程

        https://www.youtube.com/watch?list=PLQVvvaa0QuDfKTOs3Keq_kaG2P55YRn5v&v=OGxgnH8y2NM




        Youtube精選



        下面提供了一些YouTube頻道或用戶的鏈接,這些頻道或用戶具有與AI或機(jī)器學(xué)習(xí)相關(guān)的常規(guī)內(nèi)容。


        1、sentdex (225K subscribers, 21M views)

        https://www.youtube.com/user/sentdex


        2、Siraj Raval (140K subscribers, 5M views)

        https://www.youtube.com/channel/UCWN3xxRkmTPmbKwht9FuE5A


        3、Two Minute Papers (60K subscribers, 3.3M views)

        https://www.youtube.com/user/keeroyz


        4、DeepLearning.TV (42K subscribers, 1.7M views)

        https://www.youtube.com/channel/UC9OeZkIwhzfv-_Cb7fCikLQ


        5、Data School (37K subscribers, 1.8M views)

        https://www.youtube.com/user/dataschool


        6、Machine Learning Recipes with Josh Gordon (324K views)

        https://www.youtube.com/playlist?list=PLOU2XLYxmsIIuiBfYad6rFYQU_jL2ryal


        7、Artificial Intelligence — Topic (10K subscribers)

        https://www.youtube.com/channel/UC9pXDvrYYsHuDkauM2fLllQ


        8、Allen Institute for Artificial Intelligence (AI2) (1.6K subscribers, 69K views)

        https://www.youtube.com/channel/UCEqgmyWChwvt6MFGGlmUQCQ


        9、Machine Learning at Berkeley (634 subscribers, 48K views)

        https://www.youtube.com/channel/UCXweTmAk9K-Uo9R6SmfGtjg


        10、Understanding Machine Learning — Shai Ben-David (973 subscribers, 43K views)

        https://www.youtube.com/channel/UCR4_akQ1HYMUcDszPQ6jh8Q


        11、Machine Learning TV (455 subscribers, 11K views)

        https://www.youtube.com/channel/UChIaUcs3tho6XhyU6K6KMrw



        博客專欄



        下面我主要列了些那些持續(xù)發(fā)布與人工智能相關(guān)主題的原創(chuàng)博客。


        1、Andrej Karpathy

        http://karpathy.github.io/


        2、i am trask

        http://iamtrask.github.io/


        3、Christopher Olah

        http://colah.github.io/


        4、Top Bots

        http://www.topbots.com/


        5、WildML

        http://www.wildml.com/


        6、Distill

        http://distill.pub/


        7、Machine Learning Mastery

        http://machinelearningmastery.com/blog/


        8、FastML

        http://fastml.com/


        9、Adventures in NI

        https://joanna-bryson.blogspot.de/


        10、Sebastian Ruder

        http://sebastianruder.com/


        11、Unsupervised Methods

        http://unsupervisedmethods.com/


        12、Explosion

        https://explosion.ai/blog/


        13、Tim Dettmers?

        http://timdettmers.com/


        14、When trees fall…?

        http://blog.wtf.sg/


        15、ML@B

        https://ml.berkeley.edu/blog/



        Github



        AI社區(qū)的好處之一是,大多數(shù)新項(xiàng)目都是開源的,可以在Github上使用。在Github上也有很多教育資源。


        1、Machine Learning


        https://github.com/search?o=desc&q=topic%3Amachine-learning+&s=stars&type=Repositories&utf8=%E2%9C%93


        2、Deep Learning


        https://github.com/search?q=topic%3Adeep-learning&type=Repositories


        3、Tensorflow


        https://github.com/search?q=topic%3Atensorflow&type=Repositories


        4、Neural Network


        https://github.com/search?q=topic%3Aneural-network&type=Repositories


        5、NLP


        https://github.com/search?utf8=%E2%9C%93&q=topic%3Anlp&type=Repositories



        書籍推薦



        市面上有很多關(guān)于機(jī)器學(xué)習(xí)、深度學(xué)習(xí)和NLP的書籍。在這一節(jié)中,我將只關(guān)注那些你可以直接從網(wǎng)上獲取或下載的免費(fèi)書籍。


        機(jī)器學(xué)習(xí)部分


        1、Understanding Machine Learning From Theory to Algorithms

        http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf


        2、Machine Learning Yearning

        http://www.mlyearning.org/


        3、A Course in Machine Learning

        http://ciml.info/


        4、Machine Learning

        https://www.intechopen.com/books/machine_learning


        5、Neural Networks and Deep Learning

        http://neuralnetworksanddeeplearning.com/


        6、Deep Learning Book

        http://www.deeplearningbook.org/


        7、Reinforcement Learning: An Introduction

        http://incompleteideas.net/sutton/book/the-book-2nd.html


        8、Reinforcement Learning

        https://www.intechopen.com/books/reinforcement_learning


        NLP部分


        1、Speech and Language Processing


        https://web.stanford.edu/~jurafsky/slp3/


        2、Natural Language Processing with Python

        http://www.nltk.org/book/


        3、An Introduction to Information Retrieval

        https://nlp.stanford.edu/IR-book/html/htmledition/irbook.html


        數(shù)學(xué)基礎(chǔ)部分


        1、Introduction to Statistical Thought


        http://people.math.umass.edu/~lavine/Book/book.pdf


        2、Introduction to Bayesian Statistics


        https://www.stat.auckland.ac.nz/~brewer/stats331.pdf


        3、Introduction to Probability


        https://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/amsbook.mac.pdf


        4、Think Stats: Probability and Statistics for Python programmers


        http://greenteapress.com/wp/think-stats-2e/


        5、The Probability and Statistics Cookbook


        http://statistics.zone/


        6、Linear Algebra


        http://joshua.smcvt.edu/linearalgebra/book.pdf


        7、Linear Algebra Done Wrong


        http://www.math.brown.edu/~treil/papers/LADW/book.pdf


        8、Linear Algebra, Theory And Applications

        https://math.byu.edu/~klkuttle/Linearalgebra.pdf


        9、Mathematics for Computer Science

        https://courses.csail.mit.edu/6.042/spring17/mcs.pdf


        10、Calculus

        https://ocw.mit.edu/ans7870/resources/Strang/Edited/Calculus/Calculus.pdf


        11、Calculus I for Computer Science and Statistics Students

        http://www.math.lmu.de/~philip/publications/lectureNotes/calc1_forInfAndStatStudents.pdf


        Quora



        Quora已經(jīng)成為人工智能和機(jī)器學(xué)習(xí)的重要資源。許多頂尖的研究人員在網(wǎng)站上回答問題。下面我列出了一些主要的人工智能相關(guān)主題:


        1、Computer-Science

        https://www.quora.com/topic/Computer-Science


        2、Machine-Learning


        https://www.quora.com/topic/Machine-Learning


        3、Artificial-Intelligence


        https://www.quora.com/topic/Artificial-Intelligence


        4、Deep-Learning


        https://www.quora.com/topic/Deep-Learning


        5、Natural-Language-Processing


        https://www.quora.com/topic/Natural-Language-Processing


        6、Classification-machine-learning


        https://www.quora.com/topic/Classification-machine-learning


        7、Artificial-General-Intelligence


        https://www.quora.com/topic/Artificial-General-Intelligence


        8、Convolutional-Neural-Networks-CNNs


        https://www.quora.com/topic/Convolutional-Neural-Networks-CNNs


        9、Computational-Linguistics


        https://www.quora.com/topic/Computational-Linguistics


        10、Recurrent-Neural-Networks


        https://www.quora.com/topic/Recurrent-Neural-Networks



        會議



        不出所料,隨著人工智能的普及,與人工智能相關(guān)的會議數(shù)量也在增加。


        學(xué)術(shù)


        1、NIPS

        https://nips.cc/


        2、ICML

        https://2017.icml.cc/


        3、KDD

        http://www.kdd.org/


        4、ICLR

        http://www.iclr.cc/


        5、ACL

        http://acl2017.org/


        6、EMNLP

        http://emnlp2017.net/


        7、CVPR

        http://cvpr2017.thecvf.com/


        8、ICCF

        http://iccv2017.thecvf.com/


        專業(yè)


        1、O’Reilly Artificial Intelligence Conference

        https://conferences.oreilly.com/artificial-intelligence/


        2、Machine Learning Conference

        http://mlconf.com/


        3、AI Expo

        https://www.ai-expo.net/


        4、AI Summit

        https://theaisummit.com/


        5、AI Conference

        https://aiconference.ticketleap.com/helloworld/


        AIRX團(tuán)隊(duì)整理:

        https://medium.com/machine-learning-in-practice/my-curated-list-of-ai-and-machine-learning-resources-from-around-the-web-9a97823b8524


        持續(xù)更新~~


        下載1:OpenCV黑魔法


        AI算法與圖像處理」公眾號后臺回復(fù):OpenCV黑魔法,即可下載小編精心編寫整理的計(jì)算機(jī)視覺趣味實(shí)戰(zhàn)教程



        下載2 CVPR2020

        AI算法與圖像處公眾號后臺回復(fù):CVPR2020,即可下載1467篇CVPR?2020論文
        個人微信(如果沒有備注不拉群!
        請注明:地區(qū)+學(xué)校/企業(yè)+研究方向+昵稱


        覺得有趣就點(diǎn)亮在看吧




        瀏覽 87
        點(diǎn)贊
        評論
        收藏
        分享

        手機(jī)掃一掃分享

        分享
        舉報(bào)
        評論
        圖片
        表情
        推薦
        點(diǎn)贊
        評論
        收藏
        分享

        手機(jī)掃一掃分享

        分享
        舉報(bào)
        1. <strong id="7actg"></strong>
        2. <table id="7actg"></table>

        3. <address id="7actg"></address>
          <address id="7actg"></address>
          1. <object id="7actg"><tt id="7actg"></tt></object>
            夜夜添无码一区二区三区 | 亚洲小视频在线 | 精品国精品自拍自在线 | 成人视频网站免费观看 | 高清无码中出 | 亚洲热av | 乱伦手机| 亚洲天堂手机在线观看 | 免费人成视频在线观看网站 | 一级黄色免费大片 |