1. 中國(guó)88個(gè)超500萬(wàn)人口的大中城市都在哪里?Python動(dòng)態(tài)圖告訴你!

        共 19649字,需瀏覽 40分鐘

         ·

        2021-07-19 16:59

        今日表情 ??


        我國(guó)的城市層次


        除港澳臺(tái)外,中國(guó)一共有337個(gè)地級(jí)市(含4個(gè)直轄市)。一般綜合考慮城市人口規(guī)模和城市經(jīng)濟(jì)發(fā)展水平等因素,可以將城市分成一線、新一線、二線、三線、四線、五線等不同層次。


        下面我們來(lái)看一份第一財(cái)經(jīng)新一線城市研究所發(fā)布的一份2021城市商業(yè)魅力排行榜城市層次榜單。


        我國(guó)城市人口規(guī)模


        如果僅僅考慮城市人口規(guī)模的話,根據(jù)最新人口普查公開(kāi)數(shù)據(jù),中國(guó)337個(gè)地級(jí)市當(dāng)中,一共有88個(gè)城市超過(guò)500萬(wàn)個(gè)。它們是哪些城市呢?我們用Python動(dòng)態(tài)圖盤(pán)點(diǎn)一下吧!


        先上圖片


        再上視頻


        最后上代碼


        import numpy as np 
        import pandas as pd 
        import geopandas as gpd 
        import shapely 
        from shapely import geometry as geo 
        from shapely import wkt 
        import geopandas as gpd 
        import matplotlib.pyplot as plt 
        import matplotlib.animation as  animation 
        import contextily as ctx

        import imageio
        import os 
        from PIL import Image

        plt.rcParams['font.family'] = 'sans-serif'
        plt.rcParams['font.sans-serif'] = ['SimHei']
        plt.rcParams['axes.unicode_minus'] = False
        plt.rcParams['animation.writer'] = 'html'
        plt.rcParams['animation.embed_limit'] = 100

        def rgba_to_rgb(img_rgba):
            img_rgb = Image.new("RGB", img_rgba.size, (255255255))
            img_rgb.paste(img_rgba, mask=img_rgba.split()[3]) 
            return img_rgb 

        def html_to_gif(html_file, gif_file, duration=0.5):
            path = html_file.replace(".html","_frames")
            images = [os.path.join(path,x) for x in sorted(os.listdir(path))]
            frames = [imageio.imread(x) for x in images]
            if frames[0].shape[-1]==4:
                frames = [np.array(rgba_to_rgb(Image.fromarray(x))) for x in frames]
            imageio.mimsave(gif_file, frames, 'gif', duration=duration)
            return gif_file

        cmap = [
        '#2E91E5',
        '#1CA71C',
        '#DA16FF',
        '#B68100',
        '#EB663B',
        '#00A08B',
        '#FC0080',
        '#6C7C32',
        '#862A16',
        '#620042',
        '#DA60CA',
        '#0D2A63']*100

        def getCoords(geom):
            if isinstance(geom,geo.MultiPolygon):
                return [np.array(g.exterior) for g in geom.geoms]
            elif isinstance(geom,geo.Polygon):
                return [np.array(geom.exterior)]
            elif isinstance(geom,geo.LineString):
                return [np.array(geom)]
            elif isinstance(geom,geo.MultiLineString):
                return [np.array(x) for x in list(geom.geoms)]
            else:
                raise Exception("geom must be one of [polygon,MultiPolygon,LineString,MultiLineString]!")

        #底圖數(shù)據(jù)
        dfprovince = gpd.read_file("./data/dfprovince.geojson").set_crs("epsg:4326").to_crs("epsg:2343")
        dfnanhai = gpd.read_file("./data/dfnanhai.geojson").set_crs("epsg:4326").to_crs("epsg:2343")
        dfline9 =  dfnanhai[(dfnanhai["LENGTH"]>1.0)&(dfnanhai["LENGTH"]<2.0)]

        #散點(diǎn)數(shù)據(jù)
        dfpoints = gpd.read_file("./data/china_big_cities.geojson").set_crs("epsg:4326").to_crs("epsg:2343")
        dfpoints["point"] = dfpoints.representative_point()
        dfpoints = dfpoints.query("population>=5000000"

        df = pd.DataFrame({"x":[pt.x for pt in dfpoints["point"]],
                          "y": [pt.y for pt in dfpoints["point"]],
                          "z":[x for x in dfpoints["population"]]})
        df.index = [x for x in dfpoints["city"]] 

        def bubble_map_dance(df,title = "中國(guó)超500萬(wàn)人口城市",
                             filename = None,
                             figsize = (8,6),dpi = 144,
                             duration = 0.5,
                             anotate_points = ["北京市","上海市","重慶市","贛州市","沈陽(yáng)市"])
        :


            fig, ax_base =plt.subplots(figsize=figsize,dpi=dpi)
            ax_child=fig.add_axes([0.800,0.125,0.10,0.20])
            
            def plot_frame(i):

                    ax_base.clear()
                    ax_child.clear()

                    #============================================================
                    #繪制底圖
                    #============================================================

                    #繪制省邊界
                    polygons = [getCoords(x) for x in dfprovince["geometry"]]
                    for j,coords in enumerate(polygons):
                        for x in coords:
                            poly = plt.Polygon(x, fill=True, ec = "gray", fc = "white",alpha=0.5,linewidth=.8)
                            poly_child = plt.Polygon(x, fill=True, ec = "gray", fc = "white",alpha=0.5,linewidth=.8)
                            ax_base.add_patch(poly)
                            ax_child.add_patch(poly_child )

                    #繪制九段線
                    coords = [getCoords(x) for x in dfline9["geometry"]]
                    lines = [y for x in coords for y in x ]
                    for ln in lines:
                        x, y = np.transpose(ln)
                        line = plt.Line2D(x,y,color="gray",linestyle="-.",linewidth=1.5)
                        line_child = plt.Line2D(x,y,color="gray",linestyle="-.",linewidth=1.5)
                        ax_base.add_artist(line)
                        ax_child.add_artist(line_child)



                    #設(shè)置spine格式
                    for spine in['top','left',"bottom","right"]:
                        ax_base.spines[spine].set_color("none")
                        ax_child.spines[spine].set_alpha(0.5)
                    ax_base.axis("off")
                    

                    #設(shè)置繪圖范圍
                    bounds = dfprovince.total_bounds
                    ax_base.set_xlim(bounds[0]-(bounds[2]-bounds[0])/10, bounds[2]+(bounds[2]-bounds[0])/10)
                    ax_base.set_ylim(bounds[1]+(bounds[3]-bounds[1])/3.5, bounds[3]+(bounds[3]-bounds[1])/100)

                    ax_child.set_xlim(bounds[2]-(bounds[2]-bounds[0])/2.5, bounds[2]-(bounds[2]-bounds[0])/20)
                    ax_child.set_ylim(bounds[1]-(bounds[3]-bounds[1])/20, bounds[1]+(bounds[3]-bounds[1])/2)

                    #移除坐標(biāo)軸刻度
                    ax_child.set_xticks([]);
                    ax_child.set_yticks([]);

                    #============================================================
                    #繪制散點(diǎn)
                    #============================================================

                    k = i//3+1
                    m = i%3
                    text = "NO."+str(len(df)+1-k) 

                    dfdata = df.iloc[:k,:].copy()
                    dftmp = df.iloc[:k-1,:].copy()

                    # 繪制散點(diǎn)圖像
                    if len(dftmp)>0:
                        ax_base.scatter(dftmp["x"],dftmp["y"],s = 100*dftmp["z"]/df["z"].mean(),
                               c = (cmap*100)[0:len(dftmp)],alpha = 0.3,zorder = 3)
                        ax_child.scatter(dftmp["x"],dftmp["y"],s = 100*dftmp["z"]/df["z"].mean(),
                               c = (cmap*100)[0:len(dftmp)],alpha = 0.3,zorder = 3)

                        # 添加注釋文字
                        for i,p in enumerate(dftmp.index):
                            px,py,pz = dftmp.loc[p,["x","y","z"]].tolist() 
                            if p in anotate_points:
                                ax_base.annotate(p,xy = (px,py),  xycoords = "data",xytext = (-15,10),
                                fontsize = 10,fontweight = "bold",color = cmap[i], textcoords = "offset points")
                    
                    # 添加標(biāo)題和排名序號(hào)
                    #ax_base.set_title(title,color = "black",fontsize = 12)
                    ax_base.text(0.50.95, title, va="center", ha="center"
                                size = 12,transform = ax_base.transAxes)
                    ax_base.text(0.50.5, text, va="center", ha="center"
                                 alpha=0.3, size = 50,transform = ax_base.transAxes)

                    # 添加注意力動(dòng)畫(huà)
                    if m==0:
                        px,py,pz = dfdata["x"][[-1]],dfdata["y"][[-1]],dfdata["z"][-1]
                        p = dfdata.index[-1]+":"+str(pz//10000)+"萬(wàn)"
                        ax_base.scatter(px,py,s = 800*pz/df["z"].mean(),
                           c = cmap[len(dfdata)-1:len(dfdata)],alpha = 0.5,zorder = 4)
                        ax_base.annotate(p,xy = (px,py),  xycoords = "data",
                                xytext = (-15,10),fontsize = 20,fontweight = "bold",
                                color = cmap[k-1], textcoords = "offset points",zorder = 5)
                        
                    if m==1:
                        px,py,pz = dfdata["x"][[-1]],dfdata["y"][[-1]],dfdata["z"][-1]
                        p = dfdata.index[-1]+":"+str(pz//10000)+"萬(wàn)"
                        ax_base.scatter(px,py,s = 400*pz/df["z"].mean(),
                           c = cmap[len(dfdata)-1:len(dfdata)],alpha = 0.5,zorder = 4)
                        ax_base.annotate(p,xy = (px,py),  xycoords = "data",
                                xytext = (-15,10),fontsize = 15,fontweight = "bold",
                                color = cmap[k-1], textcoords = "offset points",zorder = 5)

                    if m==2:
                        px,py,pz = dfdata["x"][[-1]],dfdata["y"][[-1]],dfdata["z"][-1]
                        p = dfdata.index[-1]+":"+str(pz//10000)+"萬(wàn)"
                        ax_base.scatter(px,py,s = 100*pz/df["z"].mean(),
                           c = cmap[len(dfdata)-1:len(dfdata)],alpha = 0.5,zorder = 4)
                        ax_base.annotate(p,xy = (px,py),  xycoords = "data",
                                xytext = (-15,10),fontsize = 10,fontweight = "bold",
                                color = cmap[k-1], textcoords = "offset points",zorder = 5)
                        
            my_animation = animation.FuncAnimation(fig,plot_frame,frames = range(0,3*len(df)),interval = int(duration*1000))
            
            if filename is None:
                try:
                    from IPython.display import HTML
                    HTML(my_animation.to_jshtml())
                    return HTML(my_animation.to_jshtml())
                except ImportError:
                    pass
            else:
                my_animation.save(filename)
                return filename

        html_file = "中國(guó)超500萬(wàn)人口城市.html"
        bubble_map_dance(df,filename = html_file)

        gif_file = html_file.replace(".html",".gif")
        html_to_gif(html_file,gif_file,duration=0.5)


        收工。??



        萬(wàn)水千山總是情,點(diǎn)個(gè)在看行不行???

        瀏覽 120
        點(diǎn)贊
        評(píng)論
        收藏
        分享

        手機(jī)掃一掃分享

        分享
        舉報(bào)
        評(píng)論
        圖片
        表情
        推薦
        點(diǎn)贊
        評(píng)論
        收藏
        分享

        手機(jī)掃一掃分享

        分享
        舉報(bào)
          
          

            1. 国产精品一卡 | 呦小性13一14xxxxhd | 俺来俺来也www色官网 | 国产精品丝袜在线播放 | 乳色吐息日漫 |