1. scikit-learn 1.0 版本重要新特性一覽

        共 2312字,需瀏覽 5分鐘

         ·

        2021-09-14 18:14

        1 簡介

        就在幾天前,著名的機器學習框架scikit-learnpypi上釋放了其1.0rc1版本,這里給大家科普一下,版本號中的rcRelease Candidate的簡稱,代表當前的版本是一個候選發(fā)布版本,一旦到了這個階段,scikit-learn對于1.0版本的開發(fā)設計就基本上不會再新增功能,而是全力投入到查缺補漏的測試中去也就意味著:

        ?

        經歷了十余年的開發(fā)進程,scikit-learn即將迎來其頗具里程碑意義的一次大版本發(fā)布!

        ?

        在這次大版本更新中,scikit-learn也很有誠意地帶來了諸多新特性,下面我們就來對其中一些關鍵性的內容進行簡單的介紹。

        2 scikit-learn 1.0 版本重要特性一覽

        2.1 強制要求使用關鍵詞參數(shù)傳參

        按照scikit-learn官方的說法,為了更加清楚明確地構建機器學習代碼,在之后的版本中,絕大部分API都將逐漸轉換為強制使用「關鍵詞參數(shù)」,使用「位置參數(shù)」則會直接拋出TypeError錯誤,以SVC為例:

        2.2 新增r_regression()

        在新版本中新增了sklearn.feature_selection.r_regression(),可以用來快速計算各個自變量與因變量之間的皮爾遜簡單相關系數(shù)來輔助特征工程過程。

        2.3 新增線性分位數(shù)回歸模型QuantileRegressor()

        新版本中在sklearn.linear_model下添加了線性分位數(shù)回歸模型QuantileRegressor(),可用于構建回歸模型由自變量求出因變量的條件分位數(shù),近年來在計量經濟學中應用廣泛。

        2.4 新增基于隨機梯度下降的OneClassSvm模型

        sklearn.linear_model中新增了基于隨機梯度下降法的異常檢測模型SGDOneClassSVM()

        2.5 帶交叉驗證的Lasso回歸與ElasticNet新增sample_weight參數(shù)

        sklearn.linear_model中的LassoCV()ElasticNetCV()新增參數(shù)sample_weight,可幫助我們在模型建立的過程中通過構建權重提升部分樣本的重要性。

        2.6 為分位數(shù)回歸模型新增模型性能度量指標

        伴隨著新的分位數(shù)回歸模型,scikit-learn也順勢新增了專門用于度量分位數(shù)回歸模型性能的Pinball loss系數(shù):

        2.7 模型選擇新增StratifiedGroupKFold()

        新版中將sklearn.model_selection中常用的StratifiedKFold()GroupKFold()進行結合,使得我們可以快速構建分層分組K折交叉驗證流程,詳情參考:https://scikit-learn.org/dev/modules/generated/sklearn.model_selection.StratifiedGroupKFold.html#sklearn.model_selection.StratifiedGroupKFold

        2.8 KMeans聚類中的k-means++初始化方法運算速度提升

        新版本中cklearn.cluster中常用的KMeans()MiniBatchKMeans()聚類模型,在默認的k-means++簇心初始化方法下運算速度獲得大幅度提高,尤其是在多核機器上表現(xiàn)更佳。

        2.9 多項式&交互項特征生成速度提升

        新版本中sklearn.preprocessing中用于快速合成多項式&交互項特征的PolynomialFeatures()的運算速度更快了,且在輸入為大型稀疏特征時效果更為明顯。

        2.10 np.matrix型輸入即將棄用

        1.0版本開始,scikit-learn中的各種算法模型在接受numpy中的matrix類型輸入時,會打印「棄用警告」,且從未來的1.2版本開始,當用戶輸入np.matrix類型時將會直接報錯:

        2.11 利用feature_names_in_獲取pandas數(shù)據(jù)框輸入下的特征名稱

        當輸入的特征為pandas中的DataFrame類型時,對于訓練好的模型,可以使用feature_names_in_屬性獲取到對應輸入特征的字段名稱:

        2.12 繪制局部依賴圖的方式變化

        在我們試圖對模型進行解釋時,局部依賴圖是一個比較經典的工具,在以前的版本中我們可以使用sklearn.inspection中的plot_partial_dependence()來繪制局部依賴圖,而在新版本中將會棄用這種方式,并且在1.2版本開始正式移除這個API,新的替代方案是使用sklearn.inspection.PartialDependenceDisplayfrom_estimator()

        除了這些之外,在scikit-learn新版本中還有眾多的細碎的更新與調整內容,感興趣的朋友可以前往https://scikit-learn.org/dev/whats_new/v1.0.html自行瀏覽學習。


        相關閱讀:



        瀏覽 45
        點贊
        評論
        收藏
        分享

        手機掃一掃分享

        分享
        舉報
        評論
        圖片
        表情
        推薦
        點贊
        評論
        收藏
        分享

        手機掃一掃分享

        分享
        舉報
          
          

            1. 操逼电影五月天 | 操大学生逼| 《交换做爰》免费观看 | 小泽彻av全部作品 | 国产精品久久精品 |