1. <strong id="7actg"></strong>
    2. <table id="7actg"></table>

    3. <address id="7actg"></address>
      <address id="7actg"></address>
      1. <object id="7actg"><tt id="7actg"></tt></object>

        分析 kubernetes 中的事件機(jī)制

        共 8358字,需瀏覽 17分鐘

         ·

        2020-12-04 16:22

        我們通過 kubectl describe [資源]?命令,可以在看到Event輸出,并且經(jīng)常依賴event進(jìn)行問題定位,從event中可以分析整個POD的運(yùn)行軌跡,為服務(wù)的客觀測性提供數(shù)據(jù)來源,由此可見,event在Kubernetes中起著舉足輕重的作用。

        event展示

        event并不只是kubelet中都有的,關(guān)于event的操作被封裝在client-go/tools/record包,我們完全可以在寫入自定義的event。

        現(xiàn)在讓我們來一步步揭開event的面紗。

        Event定義

        其實(shí)event也是一個資源對象,并且通過apiserver將event存儲在etcd中,所以我們也可以通過 kubectl get event 命令查看對應(yīng)的event對象。

        以下是一個event的yaml文件:

        apiVersion: v1
        count: 1
        eventTime: null
        firstTimestamp: "2020-03-02T13:08:22Z"
        involvedObject:
        apiVersion: v1
        kind: Pod
        name: example-foo-d75d8587c-xsf64
        namespace: default
        resourceVersion: "429837"
        uid: ce611c62-6c1a-4bd8-9029-136a1adf7de4
        kind: Event
        lastTimestamp: "2020-03-02T13:08:22Z"
        message: Pod sandbox changed, it will be killed and re-created.
        metadata:
        creationTimestamp: "2020-03-02T13:08:30Z"
        name: example-foo-d75d8587c-xsf64.15f87ea1df862b64
        namespace: default
        resourceVersion: "479466"
        selfLink: /api/v1/namespaces/default/events/example-foo-d75d8587c-xsf64.15f87ea1df862b64
        uid: 9fe6f72a-341d-4c49-960b-e185982d331a
        reason: SandboxChanged
        reportingComponent: ""
        reportingInstance: ""
        source:
        component: kubelet
        host: minikube
        type: Normal


        主要字段說明:

        • involvedObject:觸發(fā)event的資源類型
        • lastTimestamp:最后一次觸發(fā)的時間
        • message:事件說明
        • metadata :event的元信息,name,namespace等
        • reason:event的原因
        • source:上報事件的來源,比如kubelet中的某個節(jié)點(diǎn)
        • type:事件類型,Normal或Warning

        event字段定義可以看這里:types.go#L5078

        接下來我們來看看,整個event是如何下入的。

        寫入事件

        1、這里以kubelet為例,看看是如何進(jìn)行事件寫入的

        2、代碼是在Kubernetes 1.17.3基礎(chǔ)上進(jìn)行分析

        先以一幅圖來看下整個的處理流程

        創(chuàng)建操作事件的客戶端:
        kubelet/app/server.go#L461

        // makeEventRecorder sets up kubeDeps.Recorder if it's nil. It's a no-op otherwise.
        func makeEventRecorder(kubeDeps *kubelet.Dependencies, nodeName types.NodeName) {
        if kubeDeps.Recorder != nil {
        return
        }
        //事件廣播
        eventBroadcaster := record.NewBroadcaster()
        //創(chuàng)建EventRecorder
        kubeDeps.Recorder = eventBroadcaster.NewRecorder(legacyscheme.Scheme, v1.EventSource{Component: componentKubelet, Host: string(nodeName)})
        //發(fā)送event至log輸出
        eventBroadcaster.StartLogging(klog.V(3).Infof)
        if kubeDeps.EventClient != nil {
        klog.V(4).Infof("Sending events to api server.")
        //發(fā)送event至apiserver
        eventBroadcaster.StartRecordingToSink(&v1core.EventSinkImpl{Interface: kubeDeps.EventClient.Events("")})
        } else {
        klog.Warning("No api server defined - no events will be sent to API server.")
        }
        }

        通過 makeEventRecorder?創(chuàng)建了 EventRecorder?實(shí)例,這是一個事件廣播器,通過它提供了StartLogging和StartRecordingToSink兩個事件處理函數(shù),分別將event發(fā)送給log和apiserver。
        NewRecorder創(chuàng)建了 EventRecorder?的實(shí)例,它提供了 Event?,Eventf?等方法供事件記錄。


        EventBroadcaster

        我們來看下EventBroadcaster接口定義:event.go#L113

        // EventBroadcaster knows how to receive events and send them to any EventSink, watcher, or log.
        type EventBroadcaster interface {
        //
        StartEventWatcher(eventHandler func(*v1.Event)) watch.Interface
        StartRecordingToSink(sink EventSink) watch.Interface
        StartLogging(logf func(format string, args ...interface{})) watch.Interface
        NewRecorder(scheme *runtime.Scheme, source v1.EventSource) EventRecorder

        Shutdown()
        }

        具體實(shí)現(xiàn)是通過 eventBroadcasterImpl ?struct來實(shí)現(xiàn)了各個方法。

        其中StartLogging 和 StartRecordingToSink 其實(shí)就是完成了對事件的消費(fèi),EventRecorder實(shí)現(xiàn)對事件的寫入,中間通過channel實(shí)現(xiàn)了生產(chǎn)者消費(fèi)者模型。

        EventRecorder

        我們先來看下EventRecorder?接口定義:event.go#L88,提供了以下4個方法

        // EventRecorder knows how to record events on behalf of an EventSource.
        type EventRecorder interface {
        // Event constructs an event from the given information and puts it in the queue for sending.
        // 'object' is the object this event is about. Event will make a reference-- or you may also
        // pass a reference to the object directly.
        // 'type' of this event, and can be one of Normal, Warning. New types could be added in future
        // 'reason' is the reason this event is generated. 'reason' should be short and unique; it
        // should be in UpperCamelCase format (starting with a capital letter). "reason" will be used
        // to automate handling of events, so imagine people writing switch statements to handle them.
        // You want to make that easy.
        // 'message' is intended to be human readable.
        //
        // The resulting event will be created in the same namespace as the reference object.
        Event(object runtime.Object, eventtype, reason, message string)

        // Eventf is just like Event, but with Sprintf for the message field.
        Eventf(object runtime.Object, eventtype, reason, messageFmt string, args ...interface{})

        // PastEventf is just like Eventf, but with an option to specify the event's 'timestamp' field.
        PastEventf(object runtime.Object, timestamp metav1.Time, eventtype, reason, messageFmt string, args ...interface{})

        // AnnotatedEventf is just like eventf, but with annotations attached
        AnnotatedEventf(object runtime.Object, annotations map[string]string, eventtype, reason, messageFmt string, args ...interface{})
        }

        主要參數(shù)說明:

        • object?對應(yīng)event資源定義中的 involvedObject
        • eventtype?對應(yīng)event資源定義中的type,可選Normal,Warning.
        • reason?:事件原因
        • message?:事件消息

        我們來看下當(dāng)我們調(diào)用 Event(object runtime.Object, eventtype, reason, message string)?的整個過程。
        發(fā)現(xiàn)最終都調(diào)用到了 generateEvent?方法:event.go#L316

        func (recorder *recorderImpl) generateEvent(object runtime.Object, annotations map[string]string, timestamp metav1.Time, eventtype, reason, message string) {	
        .....
        event := recorder.makeEvent(ref, annotations, eventtype, reason, message)
        event.Source = recorder.source
        go func() {
        // NOTE: events should be a non-blocking operation
        defer utilruntime.HandleCrash()
        recorder.Action(watch.Added, event)
        }()
        }

        最終事件在一個 goroutine?中通過調(diào)用 recorder.Action?進(jìn)入處理,這里保證了每次調(diào)用event方法都是非阻塞的。
        其中 makeEvent?的作用主要是構(gòu)造了一個event對象,事件name根據(jù)InvolvedObject中的name加上時間戳生成:

        注意看:對于一些非namespace資源產(chǎn)生的event,event的namespace是default

        func (recorder *recorderImpl) makeEvent(ref *v1.ObjectReference, annotations map[string]string, eventtype, reason, message string) *v1.Event {
        t := metav1.Time{Time: recorder.clock.Now()}
        namespace := ref.Namespace
        if namespace == "" {
        namespace = metav1.NamespaceDefault
        }
        return &v1.Event{
        ObjectMeta: metav1.ObjectMeta{
        Name: fmt.Sprintf("%v.%x", ref.Name, t.UnixNano()),
        Namespace: namespace,
        Annotations: annotations,
        },
        InvolvedObject: *ref,
        Reason: reason,
        Message: message,
        FirstTimestamp: t,
        LastTimestamp: t,
        Count: 1,
        Type: eventtype,
        }
        }

        進(jìn)一步跟蹤Action方法,apimachinery/blob/master/pkg/watch/mux.go#L188:23

        // Action distributes the given event among all watchers.
        func (m *Broadcaster) Action(action EventType, obj runtime.Object) {
        m.incoming <- Event{action, obj}
        }

        將event寫入到了一個channel里面。
        注意:
        這個Action方式是apimachinery包中的方法,因為實(shí)現(xiàn)的sturt?recorderImpl
        *watch.Broadcaster?作為一個匿名struct,并且在 NewRecorder?進(jìn)行 Broadcaster?賦值,這個Broadcaster其實(shí)就是 eventBroadcasterImpl?中的Broadcaster。

        到此,基本清楚了event最終被寫入到了 Broadcaster?中的 incoming?channel中,下面看下是怎么進(jìn)行消費(fèi)的。


        消費(fèi)事件

        makeEventRecorder?調(diào)用的 StartLogging?和 StartRecordingToSink?其實(shí)就是完成了對事件的消費(fèi)。

        • StartLogging直接將event輸出到日志
        • StartRecordingToSink將事件寫入到apiserver

        兩個方法內(nèi)部都調(diào)用了 StartEventWatcher?方法,并且傳入一個 eventHandler?方法對event進(jìn)行處理

        func (e *eventBroadcasterImpl) StartEventWatcher(eventHandler func(*v1.Event)) watch.Interface {
        watcher := e.Watch()
        go func() {
        defer utilruntime.HandleCrash()
        for watchEvent := range watcher.ResultChan() {
        event, ok := watchEvent.Object.(*v1.Event)
        if !ok {
        // This is all local, so there's no reason this should
        // ever happen.
        continue
        }
        eventHandler(event)
        }
        }()
        return watcher
        }

        其中 watcher.ResultChan?方法就拿到了事件,這里是在一個goroutine中通過func (m *Broadcaster) loop() ==>func (m *Broadcaster) distribute(event Event)?方法調(diào)用將event又寫入了broadcasterWatcher.result

        主要看下 StartRecordingToSink?提供的的eventHandlerrecordToSink?方法:

        func recordToSink(sink EventSink, event *v1.Event, eventCorrelator *EventCorrelator, sleepDuration time.Duration) {
        // Make a copy before modification, because there could be multiple listeners.
        // Events are safe to copy like this.
        eventCopy := *event
        event = &eventCopy
        result, err := eventCorrelator.EventCorrelate(event)
        if err != nil {
        utilruntime.HandleError(err)
        }
        if result.Skip {
        return
        }
        tries := 0
        for {
        if recordEvent(sink, result.Event, result.Patch, result.Event.Count > 1, eventCorrelator) {
        break
        }
        tries++
        if tries >= maxTriesPerEvent {
        klog.Errorf("Unable to write event '%#v' (retry limit exceeded!)", event)
        break
        }
        // Randomize the first sleep so that various clients won't all be
        // synced up if the master goes down.
        // 第一次重試增加隨機(jī)性,防止 apiserver 重啟的時候所有的事件都在同一時間發(fā)送事件
        if tries == 1 {
        time.Sleep(time.Duration(float64(sleepDuration) * rand.Float64()))
        } else {
        time.Sleep(sleepDuration)
        }
        }
        }

        其中event被經(jīng)過了一個 eventCorrelator.EventCorrelate(event)?方法做預(yù)處理,主要是聚合相同的事件(避免產(chǎn)生的事件過多,增加 etcd 和 apiserver 的壓力,也會導(dǎo)致查看 pod 事件很不清晰)

        下面一個for循環(huán)就是在進(jìn)行重試,最大重試次數(shù)是12次,調(diào)用 recordEvent? 方法才真正將event寫入到了apiserver。


        事件處理

        我們來看下EventCorrelate方法:

        // EventCorrelate filters, aggregates, counts, and de-duplicates all incoming events
        func (c *EventCorrelator) EventCorrelate(newEvent *v1.Event) (*EventCorrelateResult, error) {
        if newEvent == nil {
        return nil, fmt.Errorf("event is nil")
        }
        aggregateEvent, ckey := c.aggregator.EventAggregate(newEvent)
        observedEvent, patch, err := c.logger.eventObserve(aggregateEvent, ckey)
        if c.filterFunc(observedEvent) {
        return &EventCorrelateResult{Skip: true}, nil
        }
        return &EventCorrelateResult{Event: observedEvent, Patch: patch}, err
        }

        分別調(diào)用了 aggregator.EventAggregate?,logger.eventObserve?, filterFunc?三個方法,分別作用是:

        1. aggregator.EventAggregate:聚合event,如果在最近 10 分鐘出現(xiàn)過 10 個相似的事件(除了 message 和時間戳之外其他關(guān)鍵字段都相同的事件),aggregator 會把它們的 message 設(shè)置為?(combined from similar events)+event.Message
        2. logger.eventObserve:它會把相同的事件以及包含 aggregator?被聚合了的相似的事件,通過增加 Count?字段來記錄事件發(fā)生了多少次。
        3. filterFunc: 這里實(shí)現(xiàn)了一個基于令牌桶的限流算法,如果超過設(shè)定的速率則丟棄,保證了apiserver的安全。

        我們主要來看下aggregator.EventAggregate方法:

        func (e *EventAggregator) EventAggregate(newEvent *v1.Event) (*v1.Event, string) {
        now := metav1.NewTime(e.clock.Now())
        var record aggregateRecord
        // eventKey is the full cache key for this event
        //eventKey 是將除了時間戳外所有字段結(jié)合在一起
        eventKey := getEventKey(newEvent)
        // aggregateKey is for the aggregate event, if one is needed.
        //aggregateKey 是除了message和時間戳外的字段結(jié)合在一起,localKey 是message
        aggregateKey, localKey := e.keyFunc(newEvent)

        // Do we have a record of similar events in our cache?
        e.Lock()
        defer e.Unlock()
        //從cache中根據(jù)aggregateKey查詢是否存在,如果是相同或者相類似的事件會被放入cache中
        value, found := e.cache.Get(aggregateKey)
        if found {
        record = value.(aggregateRecord)
        }

        //判斷上次事件產(chǎn)生的時間是否超過10分鐘,如何操作則重新生成一個localKeys集合(集合中存放message)
        maxInterval := time.Duration(e.maxIntervalInSeconds) * time.Second
        interval := now.Time.Sub(record.lastTimestamp.Time)
        if interval > maxInterval {
        record = aggregateRecord{localKeys: sets.NewString()}
        }

        // Write the new event into the aggregation record and put it on the cache
        //將locakKey也就是message放入集合中,如果message相同就是覆蓋了
        record.localKeys.Insert(localKey)
        record.lastTimestamp = now
        e.cache.Add(aggregateKey, record)

        // If we are not yet over the threshold for unique events, don't correlate them
        //判斷l(xiāng)ocalKeys集合中存放的類似事件是否超過10個,
        if uint(record.localKeys.Len()) < e.maxEvents {
        return newEvent, eventKey
        }

        // do not grow our local key set any larger than max
        record.localKeys.PopAny()

        // create a new aggregate event, and return the aggregateKey as the cache key
        // (so that it can be overwritten.)
        eventCopy := &v1.Event{
        ObjectMeta: metav1.ObjectMeta{
        Name: fmt.Sprintf("%v.%x", newEvent.InvolvedObject.Name, now.UnixNano()),
        Namespace: newEvent.Namespace,
        },
        Count: 1,
        FirstTimestamp: now,
        InvolvedObject: newEvent.InvolvedObject,
        LastTimestamp: now,
        //這里會對message加個前綴:(combined from similar events):
        Message: e.messageFunc(newEvent),
        Type: newEvent.Type,
        Reason: newEvent.Reason,
        Source: newEvent.Source,
        }
        return eventCopy, aggregateKey
        }

        aggregator.EventAggregate方法中其實(shí)就是判斷了通過cache和localKeys判斷事件是否相似,如果最近 10 分鐘出現(xiàn)過 10 個相似的事件就合并并加上前綴,后續(xù)通過logger.eventObserve方法進(jìn)行count累加,如果message也相同,肯定就是直接count++。


        總結(jié)

        好了,event處理的整個流程基本就是這樣,我們可以概括一下,可以結(jié)合文中的圖對比一起看下:

        1. 創(chuàng)建 EventRecorder?對象,通過其提供的 Event?等方法,創(chuàng)建好event對象
        2. 將創(chuàng)建出來的對象發(fā)送給 EventBroadcaster?中的channel中
        3. EventBroadcaster?通過后臺運(yùn)行的goroutine,從管道中取出事件,并廣播給提前注冊好的handler處理
        4. 當(dāng)輸出log的handler收到事件就直接打印事件
        5. 當(dāng) EventSink?handler收到處理事件就通過預(yù)處理之后將事件發(fā)送給apiserver
        6. 其中預(yù)處理包含三個動作,1、限流 2、聚合 3、計數(shù)
        7. apiserver收到事件處理之后就存儲在etcd中

        回顧event的整個流程,可以看到event并不是保證100%事件寫入(從預(yù)處理的過程來看),這樣做是為了后端服務(wù)etcd的可用性,因為event事件在整個集群中產(chǎn)生是非常頻繁的,尤其在服務(wù)不穩(wěn)定的時候,而相比Deployment,Pod等其他資源,又沒那么的重要。所以這里做了個取舍。

        參考文檔:

        • https://cizixs.com/2017/06/22/kubelet-source-code-analysis-part4-event/
        • https://github.com/kubernetes/kubernetes/blob/v1.17.3/staging/src/k8s.io/client-go/tools/record


        ?點(diǎn)擊屏末?|??|?即刻學(xué)習(xí)

        瀏覽 44
        點(diǎn)贊
        評論
        收藏
        分享

        手機(jī)掃一掃分享

        分享
        舉報
        評論
        圖片
        表情
        推薦
        點(diǎn)贊
        評論
        收藏
        分享

        手機(jī)掃一掃分享

        分享
        舉報
        1. <strong id="7actg"></strong>
        2. <table id="7actg"></table>

        3. <address id="7actg"></address>
          <address id="7actg"></address>
          1. <object id="7actg"><tt id="7actg"></tt></object>
            亚洲天堂精品在线观看 | 欧美一区二区成人无码色情亢奋 | 日韩成人一区二区三区影院 | 黄色家庭乱伦视频 | eeuss鲁片一区二区三区小说 | 日本在线黄色 | 免费毛片基地 | 天美一区 | 国产片婬乱18一级毛片 | 亚洲高清电影 |