PyTorch 源碼解讀之 BN & SyncBN
點(diǎn)藍(lán)色字關(guān)注“機(jī)器學(xué)習(xí)算法工程師”
設(shè)為星標(biāo),干貨直達(dá)!
AI編輯:我是小將
本文作者:OpenMMLab @205120
https://zhuanlan.zhihu.com/p/337732517
本文已由原作者授權(quán)
目錄
1. BatchNorm 原理
2. BatchNorm 的 PyTorch 實(shí)現(xiàn)
2.1 _NormBase 類
2.1.1 初始化
2.1.2 模擬 BN forward
2.1.3 running_mean、running_var 的更新
2.1.4 \gamma, \beta 的更新
2.1.5 eval 模式
2.2 BatchNormNd 類
3. SyncBatchNorm 的 PyTorch 實(shí)現(xiàn)
3.1 forward
3.2 backward
1. BatchNorm 原理

BatchNorm 最早在全連接網(wǎng)絡(luò)中被提出,對(duì)每個(gè)神經(jīng)元的輸入做歸一化。擴(kuò)展到 CNN 中,就是對(duì)每個(gè)卷積核的輸入做歸一化,或者說(shuō)在 channel 之外的所有維度做歸一化。BN 帶來(lái)的好處有很多,這里簡(jiǎn)單列舉幾個(gè):
防止過(guò)擬合:?jiǎn)蝹€(gè)樣本的輸出依賴于整個(gè) mini-batch,防止對(duì)某個(gè)樣本過(guò)擬合;
加快收斂:梯度下降過(guò)程中,每一層的?
?和?
?都會(huì)不斷變化,導(dǎo)致輸出結(jié)果的分布在不斷變化,后層網(wǎng)絡(luò)就要不停地去適應(yīng)這種分布變化。用 BN 后,可以使每一層輸入的分布近似不變。防止梯度彌散:forward 過(guò)程中,逐漸往非線性函數(shù)的取值區(qū)間的上下限兩端靠近,(以 Sigmoid 為例),此時(shí)后面層的梯度變得非常小,不利于訓(xùn)練。
BN 的數(shù)學(xué)表達(dá)為:?
這里引入了縮放因子?
?和平移因子?
?,作者在文章里解釋了它們的作用:
Normalize 到?
?,?
?會(huì)導(dǎo)致新的分布喪失從前層傳遞過(guò)來(lái)的特征與知識(shí)以 Sigmoid 為例,加入?
?,?
?可以防止大部分值落在近似線性的中間部分,導(dǎo)致無(wú)法利用非線性的部分
2. BatchNorm 的 PyTorch 實(shí)現(xiàn)
PyTorch 中與 BN 相關(guān)的幾個(gè)類放在 torch.nn.modules.batchnorm 中,包含以下幾個(gè)類:
_NormBase:nn.Module?的子類,定義了 BN 中的一系列屬性與初始化、讀數(shù)據(jù)的方法;_BatchNorm:_NormBase?的子類,定義了?forward?方法;BatchNorm1d?&?BatchNorm2d?&?BatchNorm3d:_BatchNorm的子類,定義了不同的_check_input_dim方法。
2.1 _NormBase 類
2.1.1 初始化
_NormBase類定義了 BN 相關(guān)的一些屬性,如下表所示:
| attribute | meaning |
|---|---|
| num_features | 輸入的 channel 數(shù) |
| track_running_stats | 默認(rèn)為 True,是否統(tǒng)計(jì) running_mean,running_var |
| running_mean | 訓(xùn)練時(shí)統(tǒng)計(jì)輸入的 mean,之后用于 inference |
| running_var | 訓(xùn)練時(shí)統(tǒng)計(jì)輸入的 var,之后用于 inference |
| momentum | 默認(rèn) 0.1,更新 running_mean,running_var 時(shí)的動(dòng)量 |
| num_batches_tracked | PyTorch 0.4 后新加入,當(dāng) momentum 設(shè)置為 None 時(shí),使用 num_batches_tracked 計(jì)算每一輪更新的動(dòng)量 |
| affine | 默認(rèn)為 True,訓(xùn)練 weight 和 bias;否則不更新它們的值 |
| weight | 公式中的 \gamma,初始化為全 1 tensor |
| bias | 公式中的 \beta,初始化為全 0 tensor |
這里貼一下 PyTorch 的源碼:
class _NormBase(Module):
"""Common base of _InstanceNorm and _BatchNorm"""
# 讀checkpoint時(shí)會(huì)用version來(lái)區(qū)分是 PyTorch 0.4.1 之前還是之后的版本
_version = 2
__constants__ = ['track_running_stats', 'momentum', 'eps',
'num_features', 'affine']
def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=True,
track_running_stats=True):
super(_NormBase, self).__init__()
self.num_features = num_features
self.eps = eps
self.momentum = momentum
self.affine = affine
self.track_running_stats = track_running_stats
if self.affine:
# 如果打開 affine,就使用縮放因子和平移因子
self.weight = Parameter(torch.Tensor(num_features))
self.bias = Parameter(torch.Tensor(num_features))
else:
self.register_parameter('weight', None)
self.register_parameter('bias', None)
# 訓(xùn)練時(shí)是否需要統(tǒng)計(jì) mean 和 variance
if self.track_running_stats:
# buffer 不會(huì)在self.parameters()中出現(xiàn)
self.register_buffer('running_mean', torch.zeros(num_features))
self.register_buffer('running_var', torch.ones(num_features))
self.register_buffer('num_batches_tracked', torch.tensor(0, dtype=torch.long))
else:
self.register_parameter('running_mean', None)
self.register_parameter('running_var', None)
self.register_parameter('num_batches_tracked', None)
self.reset_parameters()
def reset_running_stats(self):
if self.track_running_stats:
self.running_mean.zero_()
self.running_var.fill_(1)
self.num_batches_tracked.zero_()
def reset_parameters(self):
self.reset_running_stats()
if self.affine:
init.ones_(self.weight)
init.zeros_(self.bias)
def _check_input_dim(self, input):
# 具體在 BN1d, BN2d, BN3d 中實(shí)現(xiàn),驗(yàn)證輸入合法性
raise NotImplementedError
def extra_repr(self):
return '{num_features}, eps={eps}, momentum={momentum}, affine={affine}, ' \
'track_running_stats={track_running_stats}'.format(**self.__dict__)
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
missing_keys, unexpected_keys, error_msgs):
version = local_metadata.get('version', None)
if (version is None or version < 2) and self.track_running_stats:
# at version 2: added num_batches_tracked buffer
# this should have a default value of 0
num_batches_tracked_key = prefix + 'num_batches_tracked'
if num_batches_tracked_key not in state_dict:
# 舊版本的checkpoint沒(méi)有這個(gè)key,設(shè)置為0
state_dict[num_batches_tracked_key] = torch.tensor(0, dtype=torch.long)
super(_NormBase, self)._load_from_state_dict(
state_dict, prefix, local_metadata, strict,
missing_keys, unexpected_keys, error_msgs)
class _BatchNorm(_NormBase):
def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=True,
track_running_stats=True):
super(_BatchNorm, self).__init__(
num_features, eps, momentum, affine, track_running_stats)
def forward(self, input):
self._check_input_dim(input)
# exponential_average_factor is set to self.momentum
# (when it is available) only so that it gets updated
# in ONNX graph when this node is exported to ONNX.
if self.momentum is None:
exponential_average_factor = 0.0
else:
exponential_average_factor = self.momentum
# 如果在train狀態(tài)且self.track_running_stats被設(shè)置為True,就需要更新統(tǒng)計(jì)量
if self.training and self.track_running_stats:
if self.num_batches_tracked is not None:
self.num_batches_tracked = self.num_batches_tracked + 1
# 如果momentum被設(shè)置為None,就用num_batches_tracked來(lái)加權(quán)
if self.momentum is None:
exponential_average_factor = 1.0 / float(self.num_batches_tracked)
else: # use exponential moving average
exponential_average_factor = self.momentum
return F.batch_norm(
input, self.running_mean, self.running_var, self.weight, self.bias,
self.training or not self.track_running_stats,
exponential_average_factor, self.eps)2.1.2 模擬 BN forward
PyTorch 中 BN 的 Python 部分代碼主要實(shí)現(xiàn)初始化、傳參和底層方法調(diào)用。這里用 Python 模擬 BN 的底層計(jì)算。
import torch
import torch.nn as nn
import torch.nn.modules.batchnorm
# 創(chuàng)建隨機(jī)輸入
def create_inputs():
return torch.randn(8, 3, 20, 20)
# 以 BatchNorm2d 為例
# mean_val, var_val 不為None時(shí),不對(duì)輸入進(jìn)行統(tǒng)計(jì),而直接用傳進(jìn)來(lái)的均值、方差
def dummy_bn_forward(x, bn_weight, bn_bias, eps, mean_val=None, var_val=None):
if mean_val is None:
mean_val = x.mean([0, 2, 3])
if var_val is None:
# 這里需要注意,torch.var 默認(rèn)算無(wú)偏估計(jì),因此需要手動(dòng)設(shè)置unbiased=False
var_val = x.var([0, 2, 3], unbiased=False)
x = x - mean_val[None, ..., None, None]
x = x / torch.sqrt(var_val[None, ..., None, None] + eps)
x = x * bn_weight[..., None, None] + bn_bias[..., None, None]
return mean_val, var_val, x驗(yàn)證 dummy BN 輸出的正確性:
bn_layer = nn.BatchNorm2d(num_features=3)
inputs = create_inputs()
# 用 pytorch 的實(shí)現(xiàn) forward
bn_outputs = bn_layer(inputs)
# 用 dummy bn 來(lái) forward
_, _, expected_outputs = dummy_bn_forward(
inputs, bn_layer.weight, bn_layer.bias, bn_layer.eps)
assert torch.allclose(expected_outputs, bn_outputs)沒(méi)有報(bào)異常,因此計(jì)算的值是正確的。
2.1.3 running_mean、running_var 的更新
BatchNorm 默認(rèn)打開?track_running_stats,因此每次 forward 時(shí)都會(huì)依據(jù)當(dāng)前 minibatch 的統(tǒng)計(jì)量來(lái)更新?running_mean?和?running_var。
momentum?默認(rèn)值為 0.1,控制歷史統(tǒng)計(jì)量與當(dāng)前 minibatch 在更新?running_mean、running_var?時(shí)的相對(duì)影響。


其中?
?、
?分別表示?
?的均值、方差;需要注意這里統(tǒng)計(jì)方差時(shí)用了無(wú)偏估計(jì),與論文保持一致。手動(dòng)對(duì)這一過(guò)程進(jìn)行模擬,如下所示:
running_mean = torch.zeros(3)
running_var = torch.ones_like(running_mean)
momentum = 0.1 # 這也是BN初始化時(shí)momentum默認(rèn)值
bn_layer = nn.BatchNorm2d(num_features=3, momentum=momentum)
# 模擬 forward 10 次
for t in range(10):
inputs = create_inputs()
bn_outputs = bn_layer(inputs)
inputs_mean, inputs_var, _ = dummy_bn_forward(
inputs, bn_layer.weight, bn_layer.bias, bn_layer.eps
)
n = inputs.numel() / inputs.size(1)
# 更新 running_var 和 running_mean
running_var = running_var * (1 - momentum) + momentum * inputs_var * n / (n - 1)
running_mean = running_mean * (1 - momentum) + momentum * inputs_mean
assert torch.allclose(running_var, bn_layer.running_var)
assert torch.allclose(running_mean, bn_layer.running_mean)
print(f'bn_layer running_mean is {bn_layer.running_mean}')
print(f'dummy bn running_mean is {running_mean}')
print(f'bn_layer running_var is {bn_layer.running_var}')
print(f'dummy bn running_var is {running_var}')輸出結(jié)果:
bn_layer running_mean is tensor([ 0.0101, -0.0013, 0.0101])
dummy bn running_mean is tensor([ 0.0101, -0.0013, 0.0101])
bn_layer running_var is tensor([0.9857, 0.9883, 1.0205])
dummy bn running_var is tensor([0.9857, 0.9883, 1.0205])running_mean?的初始值為 0,forward 后發(fā)生變化。同時(shí)模擬 BN 的running_mean,running_var?也與 PyTorch 實(shí)現(xiàn)的結(jié)果一致。
以上討論的是使用momentum的情況。在 PyTorch 0.4.1 后,加入了num_batches_tracked屬性,統(tǒng)計(jì) BN 一共 forward 了多少個(gè) minibatch。當(dāng)momentum被設(shè)置為None時(shí),就由num_batches_tracked來(lái)控制歷史統(tǒng)計(jì)量與當(dāng)前 minibatch 的影響占比:



接下來(lái)手動(dòng)模擬這一過(guò)程:
running_mean = torch.zeros(3)
running_var = torch.ones_like(running_mean)
num_batches_tracked = 0
# momentum 設(shè)置成 None,用 num_batches_tracked 來(lái)更新統(tǒng)計(jì)量
bn_layer = nn.BatchNorm2d(num_features=3, momentum=None)
# 同樣是模擬 forward 10次
for t in range(10):
inputs = create_inputs()
bn_outputs = bn_layer(inputs)
inputs_mean, inputs_var, _ = dummy_bn_forward(
inputs, bn_layer.weight, bn_layer.bias, bn_layer.eps
)
num_batches_tracked += 1
# exponential_average_factor
eaf = 1.0 / num_batches_tracked
n = inputs.numel() / inputs.size(1)
# 更新 running_var 和 running_mean
running_var = running_var * (1 - eaf) + eaf * inputs_var * n / (n - 1)
running_mean = running_mean * (1 - eaf) + eaf * inputs_mean
assert torch.allclose(running_var, bn_layer.running_var)
assert torch.allclose(running_mean, bn_layer.running_mean)
bn_layer.train(mode=False)
inference_inputs = create_inputs()
bn_outputs = bn_layer(inference_inputs)
_, _, dummy_outputs = dummy_bn_forward(
inference_inputs, bn_layer.weight,
bn_layer.bias, bn_layer.eps,
running_mean, running_var)
assert torch.allclose(dummy_outputs, bn_outputs)
print(f'bn_layer running_mean is {bn_layer.running_mean}')
print(f'dummy bn running_mean is {running_mean}')
print(f'bn_layer running_var is {bn_layer.running_var}')
print(f'dummy bn running_var is {running_var}')輸出:
bn_layer running_mean is tensor([-0.0040, 0.0074, -0.0162])
dummy bn running_mean is tensor([-0.0040, 0.0074, -0.0162])
bn_layer running_var is tensor([1.0097, 1.0086, 0.9815])
dummy bn running_var is tensor([1.0097, 1.0086, 0.9815])手動(dòng)模擬的結(jié)果與 PyTorch 相同。
2.1.4?
?,?
?的更新
BatchNorm 的?weight,bias?分別對(duì)應(yīng)公式里的?
?,?
?, 更新方式是梯度下降法。
import torchvision
from torchvision.transforms import Normalize, ToTensor, Compose
import torch.nn.functional as F
from torch.utils.data.dataloader import DataLoader
# 用 mnist 作為 toy dataset
mnist = torchvision.datasets.MNIST(root='mnist', download=True, transform=ToTensor())
dataloader = DataLoader(dataset=mnist, batch_size=8)
# 初始化一個(gè)帶 BN 的簡(jiǎn)單模型
toy_model = nn.Sequential(nn.Linear(28 ** 2, 128), nn.BatchNorm1d(128),
nn.ReLU(), nn.Linear(128, 10), nn.Sigmoid())
optimizer = torch.optim.SGD(toy_model.parameters(), lr=0.1)
bn_1d_layer = toy_model[1]
print(f'Initial weight is {bn_layer.weight[:4].tolist()}...')
print(f'Initial bias is {bn_layer.bias[:4].tolist()}...\n')
# 模擬更新2次參數(shù)
for (i, data) in enumerate(dataloader):
output = toy_model(data[0].view(data[0].shape[0], -1))
(F.cross_entropy(output, data[1])).backward()
# 輸出部分參數(shù)的梯度,驗(yàn)證weight和bias確實(shí)是通過(guò)gradient descent更新的
print(f'Gradient of weight is {bn_1d_layer.weight.grad[:4].tolist()}...')
print(f'Gradient of bias is {bn_1d_layer.bias.grad[:4].tolist()}...')
optimizer.step()
optimizer.zero_grad()
if i == 1:
break
print(f'\nNow weight is {bn_1d_layer.weight[:4].tolist()}...')
print(f'Now bias is {bn_1d_layer.bias[:4].tolist()}...')
inputs = torch.randn(4, 128)
bn_outputs = bn_1d_layer(inputs)
new_bn = nn.BatchNorm1d(128)
bn_outputs_no_weight_bias = new_bn(inputs)
assert not torch.allclose(bn_outputs, bn_outputs_no_weight_bias)輸出:
Initial weight is [0.9999354481697083, 1.0033478736877441, 1.0019147396087646, 0.9986106157302856]...
Initial bias is [-0.0012734815245494246, 0.001349383033812046, 0.0013358002761378884, -0.0007148777367547154]...
Gradient of weight is [-0.0004475426103454083, -0.0021388232707977295, -0.0032624618615955114, -0.0009599098702892661]...
Gradient of bias is [0.00011698803427862003, -0.001291472464799881, -0.0023048489820212126, -0.0009493136312812567]...
Gradient of weight is [-0.00035325769567862153, -0.0014295700239017606, -0.002102235099300742, 0.000851186050567776]...
Gradient of bias is [-0.00026844028616324067, -0.00025666248984634876, -0.0017800561618059874, 0.00024933076929301023]...
Now weight is [1.0000154972076416, 1.0037046670913696, 1.0024511814117432, 0.9986214637756348]...
Now bias is [-0.0012583363568410277, 0.0015041964361444116, 0.0017442908138036728, -0.0006448794738389552]...2.1.5 eval 模式
上面驗(yàn)證的都是 train 模式下 BN 的表現(xiàn),eval 模式有幾個(gè)重要的參數(shù)。
track_running_stats默認(rèn)為True,train 模式下統(tǒng)計(jì)running_mean和running_var,eval 模式下用統(tǒng)計(jì)數(shù)據(jù)作為?
?和?
?。設(shè)置為False時(shí),eval模式直接計(jì)算輸入的均值和方差。running_mean、running_var:train 模式下的統(tǒng)計(jì)量。
也就是說(shuō),BN.training?并不是決定 BN 行為的唯一參數(shù)。滿足BN.training or not BN.track_running_stats就會(huì)直接計(jì)算輸入數(shù)據(jù)的均值方差,否則用統(tǒng)計(jì)量代替。
# 切換到eval模式
bn_layer.train(mode=False)
inference_inputs = create_inputs()
# 輸出前后的 running_mean 和 running_var,驗(yàn)證eval模式下不再更新統(tǒng)計(jì)量
print(f'bn_layer running_mean is {bn_layer.running_mean}')
print(f'bn_layer running_var is {bn_layer.running_var}')
bn_outputs = bn_layer(inference_inputs)
print(f'Now bn_layer running_mean is {bn_layer.running_mean}')
print(f'Now bn_layer running_var is {bn_layer.running_var}')
# 用之前統(tǒng)計(jì)的running_mean和running_var替代輸入的running_mean和running_var
_, _, dummy_outputs = dummy_bn_forward(
inference_inputs, bn_layer.weight,
bn_layer.bias, bn_layer.eps,
running_mean, running_var)
assert torch.allclose(dummy_outputs, bn_outputs)
# 關(guān)閉track_running_stats后,即使在eval模式下,也會(huì)去計(jì)算輸入的mean和var
bn_layer.track_running_stats = False
bn_outputs_notrack = bn_layer(inference_inputs)
_, _, dummy_outputs_notrack = dummy_bn_forward(
inference_inputs, bn_layer.weight,
bn_layer.bias, bn_layer.eps)
assert torch.allclose(dummy_outputs_notrack, bn_outputs_notrack)
assert not torch.allclose(bn_outputs, bn_outputs_notrack)輸出結(jié)果如下:
bn_layer running_mean is tensor([-0.0143, 0.0089, -0.0062])
bn_layer running_var is tensor([0.9611, 1.0380, 1.0181])
Now bn_layer running_mean is tensor([-0.0143, 0.0089, -0.0062])
Now bn_layer running_var is tensor([0.9611, 1.0380, 1.0181])2.2 BatchNormNd 類
包括BatchNorm1d,BatchNorm2d,BatchNorm3d。區(qū)別只是檢查了輸入的合法性,這里簡(jiǎn)單貼一下BatchNorm2d的實(shí)現(xiàn):
class BatchNorm2d(_BatchNorm):
def _check_input_dim(self, input):
if input.dim() != 4:
raise ValueError('expected 4D input (got {}D input)'
.format(input.dim()))BatchNorm1d接受 2D 或 3D 的輸入,BatchNorm2d接受 4D 的輸入,BatchNorm3d接受 5D 的輸入。
3. SyncBatchNorm 的 PyTorch 實(shí)現(xiàn)
BN 的性能和 batch size 有很大的關(guān)系。batch size 越大,BN 的統(tǒng)計(jì)量也會(huì)越準(zhǔn)。然而像檢測(cè)這樣的任務(wù),占用顯存較高,一張顯卡往往只能拿較少的圖片(比如 2 張)來(lái)訓(xùn)練,這就導(dǎo)致 BN 的表現(xiàn)變差。一個(gè)解決方式是 SyncBN:所有卡共享同一個(gè) BN,得到全局的統(tǒng)計(jì)量。
PyTorch 的 SyncBN 分別在?torch/nn/modules/batchnorm.py?和?torch/nn/modules/_functions.py?做了實(shí)現(xiàn)。前者主要負(fù)責(zé)檢查輸入合法性,以及根據(jù)momentum等設(shè)置進(jìn)行傳參,調(diào)用后者。后者負(fù)責(zé)計(jì)算單卡統(tǒng)計(jì)量以及進(jìn)程間通信。
class SyncBatchNorm(_BatchNorm):
def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=True,
track_running_stats=True, process_group=None):
super(SyncBatchNorm, self).__init__(num_features, eps, momentum, affine, track_running_stats)
self.process_group = process_group
# gpu_size is set through DistributedDataParallel initialization. This is to ensure that SyncBatchNorm is used
# under supported condition (single GPU per process)
self.ddp_gpu_size = None
def _check_input_dim(self, input):
if input.dim() < 2:
raise ValueError('expected at least 2D input (got {}D input)'
.format(input.dim()))
def _specify_ddp_gpu_num(self, gpu_size):
if gpu_size > 1:
raise ValueError('SyncBatchNorm is only supported for DDP with single GPU per process')
self.ddp_gpu_size = gpu_size
def forward(self, input):
if not input.is_cuda:
raise ValueError('SyncBatchNorm expected input tensor to be on GPU')
self._check_input_dim(input)
# exponential_average_factor is set to self.momentum
# (when it is available) only so that it gets updated
# in ONNX graph when this node is exported to ONNX.
# 接下來(lái)這部分與普通BN差別不大
if self.momentum is None:
exponential_average_factor = 0.0
else:
exponential_average_factor = self.momentum
if self.training and self.track_running_stats:
self.num_batches_tracked = self.num_batches_tracked + 1
if self.momentum is None: # use cumulative moving average
exponential_average_factor = 1.0 / self.num_batches_tracked.item()
else: # use exponential moving average
exponential_average_factor = self.momentum
# 如果在train模式下,或者關(guān)閉track_running_stats,就需要同步全局的均值和方差
need_sync = self.training or not self.track_running_stats
if need_sync:
process_group = torch.distributed.group.WORLD
if self.process_group:
process_group = self.process_group
world_size = torch.distributed.get_world_size(process_group)
need_sync = world_size > 1
# 如果不需要同步,SyncBN的行為就與普通BN一致
if not need_sync:
return F.batch_norm(
input, self.running_mean, self.running_var, self.weight, self.bias,
self.training or not self.track_running_stats,
exponential_average_factor, self.eps)
else:
if not self.ddp_gpu_size:
raise AttributeError('SyncBatchNorm is only supported within torch.nn.parallel.DistributedDataParallel')
return sync_batch_norm.apply(
input, self.weight, self.bias, self.running_mean, self.running_var,
self.eps, exponential_average_factor, process_group, world_size)
# 把普通BN轉(zhuǎn)為SyncBN, 主要做一些參數(shù)拷貝
@classmethod
def convert_sync_batchnorm(cls, module, process_group=None):
module_output = module
if isinstance(module, torch.nn.modules.batchnorm._BatchNorm):
module_output = torch.nn.SyncBatchNorm(module.num_features,
module.eps, module.momentum,
module.affine,
module.track_running_stats,
process_group)
if module.affine:
with torch.no_grad():
module_output.weight.copy_(module.weight)
module_output.bias.copy_(module.bias)
# keep requires_grad unchanged
module_output.weight.requires_grad = module.weight.requires_grad
module_output.bias.requires_grad = module.bias.requires_grad
module_output.running_mean = module.running_mean
module_output.running_var = module.running_var
module_output.num_batches_tracked = module.num_batches_tracked
for name, child in module.named_children():
module_output.add_module(name, cls.convert_sync_batchnorm(child, process_group))
del module
return module_output3.1 forward
復(fù)習(xí)一下方差的計(jì)算方式:?
單卡上的 BN 會(huì)計(jì)算該卡對(duì)應(yīng)輸入的均值、方差,然后做 Normalize;SyncBN 則需要得到全局的統(tǒng)計(jì)量,也就是“所有卡上的輸入”對(duì)應(yīng)的均值、方差。一個(gè)簡(jiǎn)單的想法是分兩個(gè)步驟:
每張卡單獨(dú)計(jì)算其均值,然后做一次同步,得到全局均值
用全局均值去算每張卡對(duì)應(yīng)的方差,然后做一次同步,得到全局方差
但兩次同步會(huì)消耗更多時(shí)間,事實(shí)上一次同步就可以實(shí)現(xiàn)?
?和?
?的計(jì)算:

只需要在同步時(shí)算好?
?和?
?即可。這里用一張圖來(lái)描述這一過(guò)程。

實(shí)現(xiàn)時(shí),batchnorm.SyncBatchNorm?根據(jù)自身的超參設(shè)置、train/eval 等設(shè)置參數(shù),并調(diào)用_functions.SyncBatchNorm,接口是def forward(self, input, weight, bias, running_mean, running_var, eps, momentum, process_group, world_size):?首先算一下單卡上的均值和方差:
# 這里直接算invstd,也就是 1/(sqrt(var+eps))
mean, invstd = torch.batch_norm_stats(input, eps)然后同步各卡的數(shù)據(jù),得到mean_all和invstd_all,再算出全局的統(tǒng)計(jì)量,更新running_mean,running_var:
# 計(jì)算全局的mean和invstd
mean, invstd = torch.batch_norm_gather_stats_with_counts(
input,
mean_all,
invstd_all,
running_mean,
running_var,
momentum,
eps,
count_all.view(-1).long().tolist()
)3.2 backward
由于不同的進(jìn)程共享同一組 BN 參數(shù),因此在 backward 到 BN 前、后都需要做進(jìn)程的通信,在_functions.SyncBatchNorm中實(shí)現(xiàn):
# calculate local stats as well as grad_weight / grad_bias
sum_dy, sum_dy_xmu, grad_weight, grad_bias = torch.batch_norm_backward_reduce(
grad_output,
saved_input,
mean,
invstd,
weight,
self.needs_input_grad[0],
self.needs_input_grad[1],
self.needs_input_grad[2]
)算出 weight、bias 的梯度以及?
?,?
?用于計(jì)算?
?的梯度:
# all_reduce 計(jì)算梯度之和
sum_dy_all_reduce = torch.distributed.all_reduce(
sum_dy, torch.distributed.ReduceOp.SUM, process_group, async_op=True)
sum_dy_xmu_all_reduce = torch.distributed.all_reduce(
sum_dy_xmu, torch.distributed.ReduceOp.SUM, process_group, async_op=True)
# ...
# 根據(jù)總的size,對(duì)梯度做平均
divisor = count_tensor.sum()
mean_dy = sum_dy / divisor
mean_dy_xmu = sum_dy_xmu / divisor
# backward pass for gradient calculation
grad_input = torch.batch_norm_backward_elemt(
grad_output,
saved_input,
mean,
invstd,
weight,
mean_dy,
mean_dy_xmu
)推薦閱讀
CondInst:性能和速度均超越Mask RCNN的實(shí)例分割模型
mmdetection最小復(fù)刻版(十一):概率Anchor分配機(jī)制PAA深入分析
MMDetection新版本V2.7發(fā)布,支持DETR,還有YOLOV4在路上!
無(wú)需tricks,知識(shí)蒸餾提升ResNet50在ImageNet上準(zhǔn)確度至80%+
不妨試試MoCo,來(lái)替換ImageNet上pretrain模型!
mmdetection最小復(fù)刻版(七):anchor-base和anchor-free差異分析
mmdetection最小復(fù)刻版(四):獨(dú)家yolo轉(zhuǎn)化內(nèi)幕
機(jī)器學(xué)習(xí)算法工程師
? ??? ? ? ? ? ? ? ? ? ? ? ??????? ??一個(gè)用心的公眾號(hào)
?

