Redis單線程已經(jīng)很快了,為什么6.0要引入多線程?帶來什么優(yōu)勢?
閱讀本文大概需要 8.5 分鐘。
來自:r6d.cn/b8b7
Redis作為一個基于內(nèi)存的緩存系統(tǒng),一直以高性能著稱,因沒有上下文切換以及無鎖操作,即使在單線程處理情況下,讀速度仍可達到11萬次/s,寫速度達到8.1萬次/s。但是,單線程的設計也給Redis帶來一些問題:
只能使用CPU一個核; 如果刪除的鍵過大(比如Set類型中有上百萬個對象),會導致服務端阻塞好幾秒; QPS難再提高。
Lazy Free以及多線程IO,逐步向多線程過渡,下面將會做詳細介紹。單線程原理
文件事件:Redis服務器通過套接字與客戶端(或者其他Redis服務器)進行連接,而文件事件就是服務器對套接字操作的抽象;服務器與客戶端的通信會產(chǎn)生相應的文件事件,而服務器則通過監(jiān)聽并處理這些事件來完成一系列網(wǎng)絡通信操作,比如連接accept,read,write,close等;時間事件:Redis服務器中的一些操作(比如serverCron函數(shù))需要在給定的時間點執(zhí)行,而時間事件就是服務器對這類定時操作的抽象,比如過期鍵清理,服務狀態(tài)統(tǒng)計等。
單線程形式處理,所以說Redis是單線程的。此外,如下圖,Redis基于Reactor模式開發(fā)了自己的I/O事件處理器,也就是文件事件處理器,Redis在I/O事件處理上,采用了I/O多路復用技術(shù),同時監(jiān)聽多個套接字,并為套接字關(guān)聯(lián)不同的事件處理函數(shù),通過一個線程實現(xiàn)了多客戶端并發(fā)處理。
Lazy Free機制
Lazy Free,將慢操作異步化,這也是在事件處理上向多線程邁進了一步。慢操作,可以采用漸進式處理,即增加一個時間事件,比如在刪除一個具有上百萬個對象的Set鍵時,每次只刪除大鍵中的一部分數(shù)據(jù),最終實現(xiàn)大鍵的刪除。但是,該方案可能會導致回收速度趕不上創(chuàng)建速度,最終導致內(nèi)存耗盡。因此,Redis最終實現(xiàn)上是將大鍵的刪除操作異步化,采用非阻塞刪除(對應命令UNLINK),大鍵的空間回收交由單獨線程實現(xiàn),主線程只做關(guān)系解除,可以快速返回,繼續(xù)處理其他事件,避免服務器長時間阻塞。DEL命令)為例,看看Redis是如何實現(xiàn)的,下面就是刪除函數(shù)的入口,其中,lazyfree_lazy_user_del是是否修改DEL命令的默認行為,一旦開啟,執(zhí)行DEL時將會以UNLINK形式執(zhí)行。void delCommand(client *c) {
delGenericCommand(c,server.lazyfree_lazy_user_del);
}
/* This command implements DEL and LAZYDEL. */
void delGenericCommand(client *c, int lazy) {
int numdel = 0, j;
for (j = 1; j < c->argc; j++) {
expireIfNeeded(c->db,c->argv[j]);
// 根據(jù)配置確定DEL在執(zhí)行時是否以lazy形式執(zhí)行
int deleted = lazy ? dbAsyncDelete(c->db,c->argv[j]) :
dbSyncDelete(c->db,c->argv[j]);
if (deleted) {
signalModifiedKey(c,c->db,c->argv[j]);
notifyKeyspaceEvent(NOTIFY_GENERIC,
"del",c->argv[j],c->db->id);
server.dirty++;
numdel++;
}
}
addReplyLongLong(c,numdel);
}`
Set類型,回收收益就是集合中元素個數(shù)。/* Delete a key, value, and associated expiration entry if any, from the DB.
* If there are enough allocations to free the value object may be put into
* a lazy free list instead of being freed synchronously. The lazy free list
* will be reclaimed in a different bio.c thread. */
#define LAZYFREE_THRESHOLD 64
int dbAsyncDelete(redisDb *db, robj *key) {
/* Deleting an entry from the expires dict will not free the sds of
* the key, because it is shared with the main dictionary. */
if (dictSize(db->expires) > 0) dictDelete(db->expires,key->ptr);
/* If the value is composed of a few allocations, to free in a lazy way
* is actually just slower... So under a certain limit we just free
* the object synchronously. */
dictEntry *de = dictUnlink(db->dict,key->ptr);
if (de) {
robj *val = dictGetVal(de);
// 計算value的回收收益
size_t free_effort = lazyfreeGetFreeEffort(val);
/* If releasing the object is too much work, do it in the background
* by adding the object to the lazy free list.
* Note that if the object is shared, to reclaim it now it is not
* possible. This rarely happens, however sometimes the implementation
* of parts of the Redis core may call incrRefCount() to protect
* objects, and then call dbDelete(). In this case we'll fall
* through and reach the dictFreeUnlinkedEntry() call, that will be
* equivalent to just calling decrRefCount(). */
// 只有回收收益超過一定值,才會執(zhí)行異步刪除,否則還是會退化到同步刪除
if (free_effort > LAZYFREE_THRESHOLD && val->refcount == 1) {
atomicIncr(lazyfree_objects,1);
bioCreateBackgroundJob(BIO_LAZY_FREE,val,NULL,NULL);
dictSetVal(db->dict,de,NULL);
}
}
/* Release the key-val pair, or just the key if we set the val
* field to NULL in order to lazy free it later. */
if (de) {
dictFreeUnlinkedEntry(db->dict,de);
if (server.cluster_enabled) slotToKeyDel(key->ptr);
return 1;
} else {
return 0;
}
}`
a threaded lazy free,Redis實現(xiàn)了對于Slow Operation的Lazy操作,避免了在大鍵刪除,FLUSHALL,FLUSHDB時導致服務器阻塞。當然,在實現(xiàn)該功能時,不僅引入了lazy free線程,也對Redis聚合類型在存儲結(jié)構(gòu)上進行改進。因為Redis內(nèi)部使用了很多共享對象,比如客戶端輸出緩存。當然,Redis并未使用加鎖來避免線程沖突,鎖競爭會導致性能下降,而是去掉了共享對象,直接采用數(shù)據(jù)拷貝,如下,在3.x和6.x中ZSet節(jié)點value的不同實現(xiàn)。// 3.2.5版本ZSet節(jié)點實現(xiàn),value定義robj *obj
/* ZSETs use a specialized version of Skiplists */
typedef struct zskiplistNode {
robj *obj;
double score;
struct zskiplistNode *backward;
struct zskiplistLevel {
struct zskiplistNode *forward;
unsigned int span;
} level[];
} zskiplistNode;
// 6.0.10版本ZSet節(jié)點實現(xiàn),value定義為sds ele
/* ZSETs use a specialized version of Skiplists */
typedef struct zskiplistNode {
sds ele;
double score;
struct zskiplistNode *backward;
struct zskiplistLevel {
struct zskiplistNode *forward;
unsigned long span;
} level[];
} zskiplistNode;`
lazy free功能,也為Redis向多線程跨進帶來了可能,正如作者所述:Now that values of aggregated data types are fully unshared, and client output buffers don’t contain shared objects as well, there is a lot to exploit. For example it is finally possible to implement threaded I/O in Redis, so that different clients are served by different threads. This means that we’ll have a global lock only when accessing the database, but the clients read/write syscalls and even the parsing of the command the client is sending, can happen in different threads.
多線程I/O及其局限性
Lazy Free,自此Redis有了一個Lazy Free線程專門用于大鍵的回收,同時,也去掉了聚合類型的共享對象,這為多線程帶來可能,Redis也不負眾望,在6.0版本實現(xiàn)了多線程I/O。實現(xiàn)原理

事件處理線程每次獲取到可讀事件時,會將所有就緒的讀事件分配給I/O線程,并進行等待,在所有I/O線程完成讀操作后,事件處理線程開始執(zhí)行任務處理,在處理結(jié)束后,同樣將寫事件分配給I/O線程,等待所有I/O線程完成寫操作。事件處理線程任務分配流程:int handleClientsWithPendingReadsUsingThreads(void) {
...
/* Distribute the clients across N different lists. */
listIter li;
listNode *ln;
listRewind(server.clients_pending_read,&li);
int item_id = 0;
// 將等待處理的客戶端分配給I/O線程
while((ln = listNext(&li))) {
client *c = listNodeValue(ln);
int target_id = item_id % server.io_threads_num;
listAddNodeTail(io_threads_list[target_id],c);
item_id++;
}
...
/* Wait for all the other threads to end their work. */
// 輪訓等待所有I/O線程處理完
while(1) {
unsigned long pending = 0;
for (int j = 1; j < server.io_threads_num; j++)
pending += io_threads_pending[j];
if (pending == 0) break;
}
...
return processed;
}`
I/O線程處理流程:void *IOThreadMain(void *myid) {
...
while(1) {
...
// I/O線程執(zhí)行讀寫操作
while((ln = listNext(&li))) {
client *c = listNodeValue(ln);
// io_threads_op判斷是讀還是寫事件
if (io_threads_op == IO_THREADS_OP_WRITE) {
writeToClient(c,0);
} else if (io_threads_op == IO_THREADS_OP_READ) {
readQueryFromClient(c->conn);
} else {
serverPanic("io_threads_op value is unknown");
}
}
listEmpty(io_threads_list[id]);
io_threads_pending[id] = 0;
if (tio_debug) printf("[%ld] Done\n", id);
}
}`
局限性
I/O線程只能同時執(zhí)行讀或者同時執(zhí)行寫操作,期間事件處理線程一直處于等待狀態(tài),并非流水線模型,有很多輪訓等待開銷。Tair多線程實現(xiàn)原理
Main Thread負責客戶端連接建立等,IO Thread負責請求讀取、響應發(fā)送、命令解析等,Worker Thread線程專門用于事件處理。IO Thread讀取用戶的請求并進行解析,之后將解析結(jié)果以命令的形式放在隊列中發(fā)送給Worker Thread處理。Worker Thread將命令處理完成后生成響應,通過另一條隊列發(fā)送給IO Thread。為了提高線程的并行度,IO Thread和Worker Thread之間采用無鎖隊列 和管道 進行數(shù)據(jù)交換,整體性能會更好。
小結(jié)
Lazy Free線程,解決了諸如大鍵刪除導致服務器阻塞問題,在6.0版本引入了I/O Thread線程,正式實現(xiàn)了多線程,但相較于Tair,并不太優(yōu)雅,而且性能提升上并不多,壓測看,多線程版本性能是單線程版本的2倍,Tair多線程版本則是單線程版本的3倍。在作者看來,Redis多線程無非兩種思路,I/O threading和Slow commands threading,正如作者在其博客中所說:I/O threading is not going to happen in Redis AFAIK, because after much consideration I think it’s a lot of complexity without a good reason. Many Redis setups are network or memory bound actually. Additionally I really believe in a share-nothing setup, so the way I want to scale Redis is by improving the support for multiple Redis instances to be executed in the same host, especially via Redis Cluster.
What instead I really want a lot is slow operations threading, and with the Redis modules system we already are in the right direction. However in the future (not sure if in Redis 6 or 7) we’ll get key-level locking in the module system so that threads can completely acquire control of a key to process slow operations. Now modules can implement commands and can create a reply for the client in a completely separated way, but still to access the shared data set a global lock is needed: this will go away.
I/O threading,尤其是在6.0版本發(fā)布的原生Redis Cluster Proxy背景下,使得集群更加易用。slow operations threading(比如4.0版本發(fā)布的Lazy Free)來解決多線程問題。后續(xù)版本,是否會將IO Thread實現(xiàn)的更加完善,采用Module實現(xiàn)對慢操作的優(yōu)化,著實值得期待。<END>
掃碼加入技術(shù)交流群,不定時「送書」
推薦閱讀:
2020 年騰訊新增 20 億行代碼,鵝廠第一編程語言還是它
能掙錢的,開源 SpringBoot 商城系統(tǒng),功能超全,超漂亮,真TMD香!
最近面試BAT,整理一份面試資料《Java面試BATJ通關(guān)手冊》,覆蓋了Java核心技術(shù)、JVM、Java并發(fā)、SSM、微服務、數(shù)據(jù)庫、數(shù)據(jù)結(jié)構(gòu)等等。
朕已閱 

