1. <strong id="7actg"></strong>
    2. <table id="7actg"></table>

    3. <address id="7actg"></address>
      <address id="7actg"></address>
      1. <object id="7actg"><tt id="7actg"></tt></object>

        Hadoop重點難點:Shuffle過程中的環(huán)形緩沖區(qū)

        共 27292字,需瀏覽 55分鐘

         ·

        2021-09-18 19:45

        點擊上方藍色字體,選擇“設為星標”

        回復”面試“獲取更多驚喜

        這篇文章來自一個讀者在面試過程中的一個問題,Hadoop在shuffle過程中使用了一個數(shù)據(jù)結構-環(huán)形緩沖區(qū)。


        環(huán)形隊列是在實際編程極為有用的數(shù)據(jù)結構,它是一個首尾相連的FIFO的數(shù)據(jù)結構,采用數(shù)組的線性空間,數(shù)據(jù)組織簡單。能很快知道隊列是否滿為空。能以很快速度的來存取數(shù)據(jù)。 因為有簡單高效的原因,甚至在硬件都實現(xiàn)了環(huán)形隊列。

         

        環(huán)形隊列廣泛用于網(wǎng)絡數(shù)據(jù)收發(fā),和不同程序間數(shù)據(jù)交換(比如內核與應用程序大量交換數(shù)據(jù),從硬件接收大量數(shù)據(jù))均使用了環(huán)形隊列。

        環(huán)形緩沖區(qū)數(shù)據(jù)結構

        Map過程中環(huán)形緩沖區(qū)是指數(shù)據(jù)被map處理之后會先放入內存,內存中的這片區(qū)域就是環(huán)形緩沖區(qū)。

        環(huán)形緩沖區(qū)是在MapTask.MapOutputBuffer中定義的,相關的屬性如下:











        // k/v accounting
        // 存放meta數(shù)據(jù)的IntBuffer,都是int entry,占4byte
        private IntBuffer kvmeta; // metadata overlay on backing store
        int kvstart; // marks origin of spill metadata
        int kvend; // marks end of spill metadata
        int kvindex; // marks end of fully serialized records
        // 分割meta和key value內容的標識
        // meta數(shù)據(jù)和key value內容都存放在同一個環(huán)形緩沖區(qū),所以需要分隔開
        int equator; // marks origin of meta/serialization
        int bufstart; // marks beginning of spill
        int bufend; // marks beginning of collectable
        int bufmark; // marks end of record
        int bufindex; // marks end of collected
        int bufvoid; // marks the point where we should stop
        // reading at the end of the buffer
        // 存放key value的byte數(shù)組,單位是byte,注意與kvmeta區(qū)分
        byte[] kvbuffer; // main output buffer
        private final byte[] b0 = new byte[0];

        // key value在kvbuffer中的地址存放在偏移kvindex的距離
        private static final int VALSTART = 0; // val offset in acct
        private static final int KEYSTART = 1; // key offset in acct
        // partition信息存在kvmeta中偏移kvindex的距離
        private static final int PARTITION = 2; // partition offset in acct
        private static final int VALLEN = 3; // length of value
        // 一對key value的meta數(shù)據(jù)在kvmeta中占用的個數(shù)
        private static final int NMETA = 4; // num meta ints
        // 一對key value的meta數(shù)據(jù)在kvmeta中占用的byte數(shù)
        private static final int METASIZE = NMETA * 4; // size in bytes

        環(huán)形緩沖區(qū)其實是一個數(shù)組,數(shù)組中存放著key、value的序列化數(shù)據(jù)和key、value的元數(shù)據(jù)信息,key/value的元數(shù)據(jù)存儲的格式是int類型,每個key/value對應一個元數(shù)據(jù),元數(shù)據(jù)由4個int組成,第一個int存放value的起始位置,第二個存放key的起始位置,第三個存放partition,最后一個存放value的長度。

        key/value序列化的數(shù)據(jù)和元數(shù)據(jù)在環(huán)形緩沖區(qū)中的存儲是由equator分隔的,key/value按照索引遞增的方向存儲,meta則按照索引遞減的方向存儲,將其數(shù)組抽象為一個環(huán)形結構之后,以equator為界,key/value順時針存儲,meta逆時針存儲

        初始化

        環(huán)形緩沖區(qū)的結構在MapOutputBuffer.init中創(chuàng)建。











        public void init(MapOutputCollector.Context context
        ) throws IOException, ClassNotFoundException {
        ...
        //MAP_SORT_SPILL_PERCENT = mapreduce.map.sort.spill.percent
        // map 端buffer所占的百分比
        //sanity checks
        final float spillper =
        job.getFloat(JobContext.MAP_SORT_SPILL_PERCENT, (float)0.8);
        //IO_SORT_MB = "mapreduce.task.io.sort.mb"
        // map 端buffer大小
        // mapreduce.task.io.sort.mb * mapreduce.map.sort.spill.percent 最好是16的整數(shù)倍
        final int sortmb = job.getInt(JobContext.IO_SORT_MB, 100);
        // 所有的spill index 在內存所占的大小的閾值
        indexCacheMemoryLimit = job.getInt(JobContext.INDEX_CACHE_MEMORY_LIMIT,
        INDEX_CACHE_MEMORY_LIMIT_DEFAULT);
        ...
        // 排序的實現(xiàn)類,可以自己實現(xiàn)。這里用的是改寫的快排
        sorter = ReflectionUtils.newInstance(job.getClass("map.sort.class",
        QuickSort.class, IndexedSorter.class), job);
        // buffers and accounting
        // 上面IO_SORT_MB的單位是MB,左移20位將單位轉化為byte
        int maxMemUsage = sortmb << 20;
        // METASIZE是元數(shù)據(jù)的長度,元數(shù)據(jù)有4個int單元,分別為
        // VALSTART、KEYSTART、PARTITION、VALLEN,而int為4個byte,
        // 所以METASIZE長度為16。下面是計算buffer中最多有多少byte來存元數(shù)據(jù)
        maxMemUsage -= maxMemUsage % METASIZE;
        // 元數(shù)據(jù)數(shù)組 以byte為單位
        kvbuffer = new byte[maxMemUsage];
        bufvoid = kvbuffer.length;
        // 將kvbuffer轉化為int型的kvmeta 以int為單位,也就是4byte
        kvmeta = ByteBuffer.wrap(kvbuffer)
        .order(ByteOrder.nativeOrder())
        .asIntBuffer();
        // 設置buf和kvmeta的分界線
        setEquator(0);
        bufstart = bufend = bufindex = equator;
        kvstart = kvend = kvindex;
        // kvmeta中存放元數(shù)據(jù)實體的最大個數(shù)
        maxRec = kvmeta.capacity() / NMETA;
        // buffer spill時的閾值(不單單是sortmb*spillper)
        // 更加精確的是kvbuffer.length*spiller
        softLimit = (int)(kvbuffer.length * spillper);
        // 此變量較為重要,作為spill的動態(tài)衡量標準
        bufferRemaining = softLimit;
        ...
        // k/v serialization
        comparator = job.getOutputKeyComparator();
        keyClass = (Class<K>)job.getMapOutputKeyClass();
        valClass = (Class<V>)job.getMapOutputValueClass();
        serializationFactory = new SerializationFactory(job);
        keySerializer = serializationFactory.getSerializer(keyClass);
        // 將bb作為key序列化寫入的output
        keySerializer.open(bb);
        valSerializer = serializationFactory.getSerializer(valClass);
        // 將bb作為value序列化寫入的output
        valSerializer.open(bb);
        ...
        // combiner
        ...
        spillInProgress = false;
        // 最后一次merge時,在有combiner的情況下,超過此閾值才執(zhí)行combiner
        minSpillsForCombine = job.getInt(JobContext.MAP_COMBINE_MIN_SPILLS, 3);
        spillThread.setDaemon(true);
        spillThread.setName("SpillThread");
        spillLock.lock();
        try {
        spillThread.start();
        while (!spillThreadRunning) {
        spillDone.await();
        }
        } catch (InterruptedException e) {
        throw new IOException("Spill thread failed to initialize", e);
        } finally {
        spillLock.unlock();
        }
        if (sortSpillException != null) {
        throw new IOException("Spill thread failed to initialize",
        sortSpillException);
        }
        }

        init是對環(huán)形緩沖區(qū)進行初始化構造,由mapreduce.task.io.sort.mb決定map中環(huán)形緩沖區(qū)的大小sortmb,默認是100M。

        此緩沖區(qū)也用于存放meta,一個meta占用METASIZE(16byte),則其中用于存放數(shù)據(jù)的大小是maxMemUsage -= sortmb << 20 % METASIZE(由此可知最好設置sortmb轉換為byte之后是16的整數(shù)倍),然后用maxMemUsage初始化kvbuffer字節(jié)數(shù)組kvmeta整形數(shù)組,最后設置數(shù)組的一些標識信息。利用setEquator(0)設置kvbuffer和kvmeta的分界線,初始化的時候以0為分界線,kvindex為aligned - METASIZE + kvbuffer.length,其位置在環(huán)形數(shù)組中相當于按照逆時針方向減去METASIZE,由kvindex設置kvstart = kvend = kvindex,由equator設置bufstart = bufend = bufindex = equator,還得設置bufvoid = kvbuffer.length,bufvoid用于標識用于存放數(shù)據(jù)的最大位置。

        為了提高效率,當buffer占用達到閾值之后,會進行spill,這個閾值是由bufferRemaining進行檢查的,bufferRemaining由softLimit = (int)(kvbuffer.length * spillper); bufferRemaining = softLimit;進行初始化賦值,這里需要注意的是softLimit并不是sortmb*spillper,而是kvbuffer.length * spillper,當sortmb << 20是16的整數(shù)倍時,才可以認為softLimit是sortmb*spillper。

        下面是setEquator的代碼

        // setEquator(0)的代碼如下
        private void setEquator(int pos) {
        equator = pos;
        // set index prior to first entry, aligned at meta boundary
        // 第一個 entry的末尾位置,即元數(shù)據(jù)和kv數(shù)據(jù)的分界線 單位是byte
        final int aligned = pos - (pos % METASIZE);
        // Cast one of the operands to long to avoid integer overflow
        // 元數(shù)據(jù)中存放數(shù)據(jù)的起始位置
        kvindex = (int)
        (((long)aligned - METASIZE + kvbuffer.length) % kvbuffer.length) / 4;
        LOG.info("(EQUATOR) " + pos + " kvi " + kvindex +
        "(" + (kvindex * 4) + ")");
        }


        buffer初始化之后的抽象數(shù)據(jù)結構如下圖所示:

        環(huán)形緩沖區(qū)數(shù)據(jù)結構圖

        寫入buffer

        Map通過NewOutputCollector.write方法調用collector.collect向buffer中寫入數(shù)據(jù),數(shù)據(jù)寫入之前已在NewOutputCollector.write中對要寫入的數(shù)據(jù)進行逐條分區(qū),下面看下collect

        // MapOutputBuffer.collect
        public synchronized void collect(K key, V value, final int partition
        ) throws IOException {
        ...
        // 新數(shù)據(jù)collect時,先將剩余的空間減去元數(shù)據(jù)的長度,之后進行判斷
        bufferRemaining -= METASIZE;
        if (bufferRemaining <= 0) {
        // start spill if the thread is not running and the soft limit has been
        // reached
        spillLock.lock();
        try {
        do {
        // 首次spill時,spillInProgress是false
        if (!spillInProgress) {
        // 得到kvindex的byte位置
        final int kvbidx = 4 * kvindex;
        // 得到kvend的byte位置
        final int kvbend = 4 * kvend;
        // serialized, unspilled bytes always lie between kvindex and
        // bufindex, crossing the equator. Note that any void space
        // created by a reset must be included in "used" bytes
        final int bUsed = distanceTo(kvbidx, bufindex);
        final boolean bufsoftlimit = bUsed >= softLimit;
        if ((kvbend + METASIZE) % kvbuffer.length !=
        equator - (equator % METASIZE)) {
        // spill finished, reclaim space
        resetSpill();
        bufferRemaining = Math.min(
        distanceTo(bufindex, kvbidx) - 2 * METASIZE,
        softLimit - bUsed) - METASIZE;
        continue;
        } else if (bufsoftlimit && kvindex != kvend) {
        // spill records, if any collected; check latter, as it may
        // be possible for metadata alignment to hit spill pcnt
        startSpill();
        final int avgRec = (int)
        (mapOutputByteCounter.getCounter() /
        mapOutputRecordCounter.getCounter());
        // leave at least half the split buffer for serialization data
        // ensure that kvindex >= bufindex
        final int distkvi = distanceTo(bufindex, kvbidx);
        final int newPos = (bufindex +
        Math.max(2 * METASIZE - 1,
        Math.min(distkvi / 2,
        distkvi / (METASIZE + avgRec) * METASIZE)))
        % kvbuffer.length;
        setEquator(newPos);
        bufmark = bufindex = newPos;
        final int serBound = 4 * kvend;
        // bytes remaining before the lock must be held and limits
        // checked is the minimum of three arcs: the metadata space, the
        // serialization space, and the soft limit
        bufferRemaining = Math.min(
        // metadata max
        distanceTo(bufend, newPos),
        Math.min(
        // serialization max
        distanceTo(newPos, serBound),
        // soft limit
        softLimit)) - 2 * METASIZE;
        }
        }
        } while (false);
        } finally {
        spillLock.unlock();
        }
        }
        // 將key value 及元數(shù)據(jù)信息寫入緩沖區(qū)
        try {
        // serialize key bytes into buffer
        int keystart = bufindex;
        // 將key序列化寫入kvbuffer中,并移動bufindex
        keySerializer.serialize(key);
        // key所占空間被bufvoid分隔,則移動key,
        // 將其值放在連續(xù)的空間中便于sort時key的對比
        if (bufindex < keystart) {
        // wrapped the key; must make contiguous
        bb.shiftBufferedKey();
        keystart = 0;
        }
        // serialize value bytes into buffer
        final int valstart = bufindex;
        valSerializer.serialize(value);
        // It's possible for records to have zero length, i.e. the serializer
        // will perform no writes. To ensure that the boundary conditions are
        // checked and that the kvindex invariant is maintained, perform a
        // zero-length write into the buffer. The logic monitoring this could be
        // moved into collect, but this is cleaner and inexpensive. For now, it
        // is acceptable.
        bb.write(b0, 0, 0);

        // the record must be marked after the preceding write, as the metadata
        // for this record are not yet written
        int valend = bb.markRecord();

        mapOutputRecordCounter.increment(1);
        mapOutputByteCounter.increment(
        distanceTo(keystart, valend, bufvoid));

        // write accounting info
        kvmeta.put(kvindex + PARTITION, partition);
        kvmeta.put(kvindex + KEYSTART, keystart);
        kvmeta.put(kvindex + VALSTART, valstart);
        kvmeta.put(kvindex + VALLEN, distanceTo(valstart, valend));
        // advance kvindex
        kvindex = (kvindex - NMETA + kvmeta.capacity()) % kvmeta.capacity();
        } catch (MapBufferTooSmallException e) {
        LOG.info("Record too large for in-memory buffer: " + e.getMessage());
        spillSingleRecord(key, value, partition);
        mapOutputRecordCounter.increment(1);
        return;
        }
        }

        每次寫入數(shù)據(jù)時,執(zhí)行bufferRemaining -= METASIZE之后,檢查bufferRemaining,

        如果大于0,直接將key/value序列化對和對應的meta寫入buffer中,key/value是序列化之后寫入的,key/value經(jīng)過一些列的方法調用Serializer.serialize(key/value) -> WritableSerializer.serialize(key/value) -> BytesWritable.write(dataOut) -> DataOutputStream.write(bytes, 0, size) -> MapOutputBuffer.Buffer.write(b, off, len),最后由MapOutputBuffer.Buffer.write(b, off, len)將數(shù)據(jù)寫入kvbuffer中,write方法如下:

        public void write(byte b[], int off, int len)
        throws IOException {
        // must always verify the invariant that at least METASIZE bytes are
        // available beyond kvindex, even when len == 0
        bufferRemaining -= len;
        if (bufferRemaining <= 0) {
        // writing these bytes could exhaust available buffer space or fill
        // the buffer to soft limit. check if spill or blocking are necessary
        boolean blockwrite = false;
        spillLock.lock();
        try {
        do {
        checkSpillException();

        final int kvbidx = 4 * kvindex;
        final int kvbend = 4 * kvend;
        // ser distance to key index
        final int distkvi = distanceTo(bufindex, kvbidx);
        // ser distance to spill end index
        final int distkve = distanceTo(bufindex, kvbend);

        // if kvindex is closer than kvend, then a spill is neither in
        // progress nor complete and reset since the lock was held. The
        // write should block only if there is insufficient space to
        // complete the current write, write the metadata for this record,
        // and write the metadata for the next record. If kvend is closer,
        // then the write should block if there is too little space for
        // either the metadata or the current write. Note that collect
        // ensures its metadata requirement with a zero-length write
        blockwrite = distkvi <= distkve
        ? distkvi <= len + 2 * METASIZE
        : distkve <= len || distanceTo(bufend, kvbidx) < 2 * METASIZE;

        if (!spillInProgress) {
        if (blockwrite) {
        if ((kvbend + METASIZE) % kvbuffer.length !=
        equator - (equator % METASIZE)) {
        // spill finished, reclaim space
        // need to use meta exclusively; zero-len rec & 100% spill
        // pcnt would fail
        resetSpill(); // resetSpill doesn't move bufindex, kvindex
        bufferRemaining = Math.min(
        distkvi - 2 * METASIZE,
        softLimit - distanceTo(kvbidx, bufindex)) - len;
        continue;
        }
        // we have records we can spill; only spill if blocked
        if (kvindex != kvend) {
        startSpill();
        // Blocked on this write, waiting for the spill just
        // initiated to finish. Instead of repositioning the marker
        // and copying the partial record, we set the record start
        // to be the new equator
        setEquator(bufmark);
        } else {
        // We have no buffered records, and this record is too large
        // to write into kvbuffer. We must spill it directly from
        // collect
        final int size = distanceTo(bufstart, bufindex) + len;
        setEquator(0);
        bufstart = bufend = bufindex = equator;
        kvstart = kvend = kvindex;
        bufvoid = kvbuffer.length;
        throw new MapBufferTooSmallException(size + " bytes");
        }
        }
        }

        if (blockwrite) {
        // wait for spill
        try {
        while (spillInProgress) {
        reporter.progress();
        spillDone.await();
        }
        } catch (InterruptedException e) {
        throw new IOException(
        "Buffer interrupted while waiting for the writer", e);
        }
        }
        } while (blockwrite);
        } finally {
        spillLock.unlock();
        }
        }
        // here, we know that we have sufficient space to write
        if (bufindex + len > bufvoid) {
        final int gaplen = bufvoid - bufindex;
        System.arraycopy(b, off, kvbuffer, bufindex, gaplen);
        len -= gaplen;
        off += gaplen;
        bufindex = 0;
        }
        System.arraycopy(b, off, kvbuffer, bufindex, len);
        bufindex += len;
        }

        write方法將key/value寫入kvbuffer中,如果bufindex+len超過了bufvoid,則將寫入的內容分開存儲,將一部分寫入bufindex和bufvoid之間,然后重置bufindex,將剩余的部分寫入,這里不區(qū)分key和value,寫入key之后會在collect中判斷bufindex < keystart,當bufindex小時,則key被分開存儲,執(zhí)行bb.shiftBufferedKey(),value則直接寫入,不用判斷是否被分開存儲,key不能分開存儲是因為要對key進行排序。

        這里需要注意的是要寫入的數(shù)據(jù)太長,并且kvinde==kvend,則拋出MapBufferTooSmallException異常,在collect中捕獲,將此數(shù)據(jù)直接spill到磁盤spillSingleRecord也就是當單條記錄過長時,不寫buffer,直接寫入磁盤

        下面看下bb.shiftBufferedKey()代碼

        // BlockingBuffer.shiftBufferedKey
        protected void shiftBufferedKey() throws IOException {
        // spillLock unnecessary; both kvend and kvindex are current
        int headbytelen = bufvoid - bufmark;
        bufvoid = bufmark;
        final int kvbidx = 4 * kvindex;
        final int kvbend = 4 * kvend;
        final int avail =
        Math.min(distanceTo(0, kvbidx), distanceTo(0, kvbend));
        if (bufindex + headbytelen < avail) {
        System.arraycopy(kvbuffer, 0, kvbuffer, headbytelen, bufindex);
        System.arraycopy(kvbuffer, bufvoid, kvbuffer, 0, headbytelen);
        bufindex += headbytelen;
        bufferRemaining -= kvbuffer.length - bufvoid;
        } else {
        byte[] keytmp = new byte[bufindex];
        System.arraycopy(kvbuffer, 0, keytmp, 0, bufindex);
        bufindex = 0;
        out.write(kvbuffer, bufmark, headbytelen);
        out.write(keytmp);
        }
        }

        shiftBufferedKey時,判斷首部是否有足夠的空間存放key,有沒有足夠的空間,則先將首部的部分key寫入keytmp中,然后分兩次寫入,再次調用Buffer.write,如果有足夠的空間,分兩次copy,先將首部的部分key復制到headbytelen的位置,然后將末尾的部分key復制到首部,移動bufindex,重置bufferRemaining的值。

        key/value寫入之后,繼續(xù)寫入元數(shù)據(jù)信息并重置kvindex的值。

        spill

        一次寫入buffer結束,當寫入數(shù)據(jù)比較多,bufferRemaining小于等于0時,準備進行spill,首次spill,spillInProgress為false,此時查看bUsed = distanceTo(kvbidx, bufindex),此時bUsed >= softLimit 并且 (kvbend + METASIZE) % kvbuffer.length == equator - (equator % METASIZE),則進行spill,調用startSpill

        private void startSpill() {
        // 元數(shù)據(jù)的邊界賦值
        kvend = (kvindex + NMETA) % kvmeta.capacity();
        // key/value的邊界賦值
        bufend = bufmark;
        // 設置spill運行標識
        spillInProgress = true;
        ...
        // 利用重入鎖,對spill線程進行喚醒
        spillReady.signal();
        }

        startSpill喚醒spill線程之后,進程spill操作,但此時map向buffer的寫入操作并沒有阻塞,需要重新邊界equator和bufferRemaining的值,先來看下equator和bufferRemaining值的設定:











        // 根據(jù)已經(jīng)寫入的kv得出每個record的平均長度
        final int avgRec = (int) (mapOutputByteCounter.getCounter() /
        mapOutputRecordCounter.getCounter());
        // leave at least half the split buffer for serialization data
        // ensure that kvindex >= bufindex
        // 得到空余空間的大小
        final int distkvi = distanceTo(bufindex, kvbidx);
        // 得出新equator的位置
        final int newPos = (bufindex +
        Math.max(2 * METASIZE - 1,
        Math.min(distkvi / 2,
        distkvi / (METASIZE + avgRec) * METASIZE)))
        % kvbuffer.length;
        setEquator(newPos);
        bufmark = bufindex = newPos;
        final int serBound = 4 * kvend;
        // bytes remaining before the lock must be held and limits
        // checked is the minimum of three arcs: the metadata space, the
        // serialization space, and the soft limit
        bufferRemaining = Math.min(
        // metadata max
        distanceTo(bufend, newPos),
        Math.min(
        // serialization max
        distanceTo(newPos, serBound),
        // soft limit
        softLimit)) - 2 * METASIZE;

        因為equator是kvbuffer和kvmeta的分界線,為了更多的空間存儲kv,則最多拿出distkvi的一半來存儲meta,并且利用avgRec估算distkvi能存放多少個record和meta對,根據(jù)record和meta對的個數(shù)估算meta所占空間的大小,從distkvi/2和meta所占空間的大小中取最小值,又因為distkvi中最少得存放一個meta,所占空間為METASIZE,在選取kvindex時需要求aligned,aligned最多為METASIZE-1,總和上述因素,最終選取equator為(bufindex + Math.max(2 * METASIZE - 1, Math.min(distkvi / 2, distkvi / (METASIZE + avgRec) * METASIZE)))。equator選取之后,設置bufmark = bufindex = newPos和kvindex,但此時并不設置bufstart、bufend和kvstart、kvend,因為這幾個值要用來表示spill數(shù)據(jù)的邊界。

        spill之后,可用的空間減少了,則控制spill的bufferRemaining也應該重新設置,bufferRemaining取三個值的最小值減去2*METASIZE,三個值分別是meta可用占用的空間distanceTo(bufend, newPos),kv可用空間distanceTo(newPos, serBound)和softLimit。這里為什么要減去2*METASIZE,一個是spill之前kvend到kvindex的距離,另一個是當時的kvindex空間????此時,已有一個record要寫入buffer,需要從bufferRemaining中減去當前record的元數(shù)據(jù)占用的空間,即減去METASIZE,另一個METASIZE是在計算equator時,沒有包括kvindex到kvend(spill之前)的這段METASIZE,所以要減去這個METASIZE。

        接下來解析下SpillThread線程,查看其run方法:


        public void run() {
        spillLock.lock();
        spillThreadRunning = true;
        try {
        while (true) {
        spillDone.signal();
        // 判斷是否在spill,false則掛起SpillThread線程,等待喚醒
        while (!spillInProgress) {
        spillReady.await();
        }
        try {
        spillLock.unlock();
        // 喚醒之后,進行排序和溢寫到磁盤
        sortAndSpill();
        } catch (Throwable t) {
        sortSpillException = t;
        } finally {
        spillLock.lock();
        if (bufend < bufstart) {
        bufvoid = kvbuffer.length;
        }
        kvstart = kvend;
        bufstart = bufend;
        spillInProgress = false;
        }
        }
        } catch (InterruptedException e) {
        Thread.currentThread().interrupt();
        } finally {
        spillLock.unlock();
        spillThreadRunning = false;
        }
        }

        run中主要是sortAndSpill,

        private void sortAndSpill() throws IOException, ClassNotFoundException,
        InterruptedException {
        //approximate the length of the output file to be the length of the
        //buffer + header lengths for the partitions
        final long size = distanceTo(bufstart, bufend, bufvoid) +
        partitions * APPROX_HEADER_LENGTH;
        FSDataOutputStream out = null;
        try {
        // create spill file
        // 用來存儲index文件
        final SpillRecord spillRec = new SpillRecord(partitions);
        // 創(chuàng)建寫入磁盤的spill文件
        final Path filename =
        mapOutputFile.getSpillFileForWrite(numSpills, size);
        // 打開文件流
        out = rfs.create(filename);
        // kvend/4 是截止到當前位置能存放多少個元數(shù)據(jù)實體
        final int mstart = kvend / NMETA;
        // kvstart 處能存放多少個元數(shù)據(jù)實體
        // 元數(shù)據(jù)則在mstart和mend之間,(mstart - mend)則是元數(shù)據(jù)的個數(shù)
        final int mend = 1 + // kvend is a valid record
        (kvstart >= kvend
        ? kvstart
        : kvmeta.capacity() + kvstart) / NMETA;
        // 排序 只對元數(shù)據(jù)進行排序,只調整元數(shù)據(jù)在kvmeta中的順序
        // 排序規(guī)則是MapOutputBuffer.compare,
        // 先對partition進行排序其次對key值排序
        sorter.sort(MapOutputBuffer.this, mstart, mend, reporter);
        int spindex = mstart;
        // 創(chuàng)建rec,用于存放該分區(qū)在數(shù)據(jù)文件中的信息
        final IndexRecord rec = new IndexRecord();
        final InMemValBytes value = new InMemValBytes();
        for (int i = 0; i < partitions; ++i) {
        // 臨時文件是IFile格式的
        IFile.Writer<K, V> writer = null;
        try {
        long segmentStart = out.getPos();
        FSDataOutputStream partitionOut = CryptoUtils.wrapIfNecessary(job, out);
        writer = new Writer<K, V>(job, partitionOut, keyClass, valClass, codec,
        spilledRecordsCounter);
        // 往磁盤寫數(shù)據(jù)時先判斷是否有combiner
        if (combinerRunner == null) {
        // spill directly
        DataInputBuffer key = new DataInputBuffer();
        // 寫入相同partition的數(shù)據(jù)
        while (spindex < mend &&
        kvmeta.get(offsetFor(spindex % maxRec) + PARTITION) == i) {
        final int kvoff = offsetFor(spindex % maxRec);
        int keystart = kvmeta.get(kvoff + KEYSTART);
        int valstart = kvmeta.get(kvoff + VALSTART);
        key.reset(kvbuffer, keystart, valstart - keystart);
        getVBytesForOffset(kvoff, value);
        writer.append(key, value);
        ++spindex;
        }
        } else {
        int spstart = spindex;
        while (spindex < mend &&
        kvmeta.get(offsetFor(spindex % maxRec)
        + PARTITION) == i) {
        ++spindex;
        }
        // Note: we would like to avoid the combiner if we've fewer
        // than some threshold of records for a partition
        if (spstart != spindex) {
        combineCollector.setWriter(writer);
        RawKeyValueIterator kvIter =
        new MRResultIterator(spstart, spindex);
        combinerRunner.combine(kvIter, combineCollector);
        }
        }

        // close the writer
        writer.close();

        // record offsets
        // 記錄當前partition i的信息寫入索文件rec中
        rec.startOffset = segmentStart;
        rec.rawLength = writer.getRawLength() + CryptoUtils.cryptoPadding(job);
        rec.partLength = writer.getCompressedLength() + CryptoUtils.cryptoPadding(job);
        // spillRec中存放了spill中partition的信息,便于后續(xù)堆排序時,取出partition相關的數(shù)據(jù)進行排序
        spillRec.putIndex(rec, i);

        writer = null;
        } finally {
        if (null != writer) writer.close();
        }
        }
        // 判斷內存中的index文件是否超出閾值,超出則將index文件寫入磁盤
        // 當超出閾值時只是把當前index和之后的index寫入磁盤
        if (totalIndexCacheMemory >= indexCacheMemoryLimit) {
        // create spill index file
        // 創(chuàng)建index文件
        Path indexFilename =
        mapOutputFile.getSpillIndexFileForWrite(numSpills, partitions
        * MAP_OUTPUT_INDEX_RECORD_LENGTH);
        spillRec.writeToFile(indexFilename, job);
        } else {
        indexCacheList.add(spillRec);
        totalIndexCacheMemory +=
        spillRec.size() * MAP_OUTPUT_INDEX_RECORD_LENGTH;
        }
        LOG.info("Finished spill " + numSpills);
        ++numSpills;
        } finally {
        if (out != null) out.close();
        }
        }

        sortAndSpill中,有mstart和mend得到一共有多少條record需要spill到磁盤,調用sorter.sort對meta進行排序,先對partition進行排序,然后按key排序,排序的結果只調整meta的順序。

        排序之后,判斷是否有combiner,沒有則直接將record寫入磁盤,寫入時是一個partition一個IndexRecord,如果有combiner,則將該partition的record寫入kvIter,然后調用combinerRunner.combine執(zhí)行combiner。

        寫入磁盤之后,將spillx.out對應的spillRec放入內存indexCacheList.add(spillRec),如果所占內存totalIndexCacheMemory超過了indexCacheMemoryLimit,則創(chuàng)建index文件,將此次及以后的spillRec寫入index文件存入磁盤。

        最后spill次數(shù)遞增。sortAndSpill結束之后,回到run方法中,執(zhí)行finally中的代碼,對kvstart和bufstart賦值,kvstart = kvend,bufstart = bufend,設置spillInProgress的狀態(tài)為false。

        在spill的同時,map往buffer的寫操作并沒有停止,依然在調用collect,再次回到collect方法中,

        // MapOutputBuffer.collect
        public synchronized void collect(K key, V value, final int partition
        ) throws IOException {
        ...
        // 新數(shù)據(jù)collect時,先將剩余的空間減去元數(shù)據(jù)的長度,之后進行判斷
        bufferRemaining -= METASIZE;
        if (bufferRemaining <= 0) {
        // start spill if the thread is not running and the soft limit has been
        // reached
        spillLock.lock();
        try {
        do {
        // 首次spill時,spillInProgress是false
        if (!spillInProgress) {
        // 得到kvindex的byte位置
        final int kvbidx = 4 * kvindex;
        // 得到kvend的byte位置
        final int kvbend = 4 * kvend;
        // serialized, unspilled bytes always lie between kvindex and
        // bufindex, crossing the equator. Note that any void space
        // created by a reset must be included in "used" bytes
        final int bUsed = distanceTo(kvbidx, bufindex);
        final boolean bufsoftlimit = bUsed >= softLimit;
        if ((kvbend + METASIZE) % kvbuffer.length !=
        equator - (equator % METASIZE)) {
        // spill finished, reclaim space
        resetSpill();
        bufferRemaining = Math.min(
        distanceTo(bufindex, kvbidx) - 2 * METASIZE,
        softLimit - bUsed) - METASIZE;
        continue;
        } else if (bufsoftlimit && kvindex != kvend) {
        ...
        }
        }
        } while (false);
        } finally {
        spillLock.unlock();
        }
        }
        ...
        }

        有新的record需要寫入buffer時,判斷bufferRemaining -= METASIZE,此時的bufferRemaining是在開始spill時被重置過的(此時的bufferRemaining應該比初始的softLimit要小),當bufferRemaining小于等最后一個METASIZE是當前record進入collect之后bufferRemaining減去的那個METASIZE。

        于0時,進入if,此時spillInProgress的狀態(tài)為false,進入if (!spillInProgress),startSpill時對kvend和bufend進行了重置,則此時(kvbend + METASIZE) % kvbuffer.length != equator - (equator % METASIZE),調用resetSpill(),將kvstart、kvend和bufstart、bufend設置為上次startSpill時的位置。此時buffer已將一部分內容寫入磁盤,有大量空余的空間,則對bufferRemaining進行重置,此次不spill。

        bufferRemaining取值為Math.min(distanceTo(bufindex, kvbidx) - 2 * METASIZE, softLimit - bUsed) - METASIZE











        private void resetSpill() {
        final int e = equator;
        bufstart = bufend = e;
        final int aligned = e - (e % METASIZE);
        // set start/end to point to first meta record
        // Cast one of the operands to long to avoid integer overflow
        kvstart = kvend = (int)
        (((long)aligned - METASIZE + kvbuffer.length) % kvbuffer.length) / 4;
        LOG.info("(RESET) equator " + e + " kv " + kvstart + "(" +
        (kvstart * 4) + ")" + " kvi " + kvindex + "(" + (kvindex * 4) + ")");
        }

        當bufferRemaining再次小于等于0時,進行spill,這以后就都是套路了。環(huán)形緩沖區(qū)分析到此結束。

        八千里路云和月 | 從零到大數(shù)據(jù)專家學習路徑指南

        我們在學習Flink的時候,到底在學習什么?

        193篇文章暴揍Flink,這個合集你需要關注一下

        Flink生產(chǎn)環(huán)境TOP難題與優(yōu)化,阿里巴巴藏經(jīng)閣YYDS

        Flink CDC我吃定了耶穌也留不住他!| Flink CDC線上問題小盤點

        我們在學習Spark的時候,到底在學習什么?

        在所有Spark模塊中,我愿稱SparkSQL為最強!

        硬剛Hive | 4萬字基礎調優(yōu)面試小總結

        數(shù)據(jù)治理方法論和實踐小百科全書

        標簽體系下的用戶畫像建設小指南

        4萬字長文 | ClickHouse基礎&實踐&調優(yōu)全視角解析

        【面試&個人成長】2021年過半,社招和校招的經(jīng)驗之談

        大數(shù)據(jù)方向另一個十年開啟 |《硬剛系列》第一版完結

        我寫過的關于成長/面試/職場進階的文章

        當我們在學習Hive的時候在學習什么?「硬剛Hive續(xù)集」


        你好,我是王知無,一個大數(shù)據(jù)領域的硬核原創(chuàng)作者。

        做過后端架構、數(shù)據(jù)中間件、數(shù)據(jù)平臺&架構、算法工程化。

        專注大數(shù)據(jù)領域實時動態(tài)&技術提升&個人成長&職場進階,歡迎關注。

        瀏覽 52
        點贊
        評論
        收藏
        分享

        手機掃一掃分享

        分享
        舉報
        評論
        圖片
        表情
        推薦
        點贊
        評論
        收藏
        分享

        手機掃一掃分享

        分享
        舉報
        1. <strong id="7actg"></strong>
        2. <table id="7actg"></table>

        3. <address id="7actg"></address>
          <address id="7actg"></address>
          1. <object id="7actg"><tt id="7actg"></tt></object>
            黄色日韩视频 | 草逼123 | 国产老女人水真多一级毛片 | 国产九色av刺激露脸对白 | 成人电影高清无码在线观看 | 东京热视频在线观看 | 自拍偷拍成人在线视频 | 欧美久久免费观看 | 污污视频在线免费观看 | 女人性爱视频 |