實戰(zhàn)!HiveSQL電子商務(wù)消費行為分析!
一、前言
Hive 學(xué)習(xí)過程中的一個練習(xí)項目,如果不妥的地方或者更好的建議,歡迎指出!我們主要進(jìn)行一下一些練習(xí):
數(shù)據(jù)結(jié)構(gòu) 數(shù)據(jù)清洗 基于Hive的數(shù)據(jù)分析
二、項目需求
首先和大家講一下這個項目的需求:
「對某零售企業(yè)最近1年門店收集的數(shù)據(jù)進(jìn)行數(shù)據(jù)分析」
潛在客戶畫像 用戶消費統(tǒng)計 門店的資源利用率 消費的特征人群定位 數(shù)據(jù)的可視化展現(xiàn)
三、數(shù)據(jù)結(jié)構(gòu)
本次練習(xí)一共用到四張表,如下:
「這里有需要的小伙伴可以菜單欄:找到我」
Customer表

Transaction表

Store表

Review表

四、項目實戰(zhàn)
「Create HDFS Folder」
hdfs?dfs?-mkdir?-p?/tmp/shopping/data/customer
hdfs?dfs?-mkdir?-p?/tmp/shopping/data/transaction
hdfs?dfs?-mkdir?-p?/tmp/shopping/data/store
hdfs?dfs?-mkdir?-p?/tmp/shopping/data/review
「Upload the file to HDFS」
hdfs?dfs?-put?/opt/soft/data/customer_details.csv?/tmp/shopping/data/customer/
hdfs?dfs?-put?/opt/soft/data/transaction_details.csv?/tmp/shopping/data/transaction/
hdfs?dfs?-put?/opt/soft/data/store_details.csv?/tmp/shopping/data/store/
hdfs?dfs?-put?/opt/soft/data/store_review.csv?/tmp/shopping/data/review/
「Create database」
drop?database?if?exists?shopping?cascade
create?database?shopping
「Use database」
use?shopping
「Create external table」
「創(chuàng)建四張對應(yīng)的外部表,也就是本次項目中的近源表?!?/strong>
create?external?table?if?not?exists?ext_customer_details(
customer_id?string,
first_name?string,
last_name?string,
email?string,
gender?string,
address?string,
country?string,
language?string,
job?string,
credit_type?string,
credit_no?string
)
row?format?delimited?fields?terminated?by?','
location?'/tmp/shopping/data/customer/'
tblproperties('skip.header.line.count'='1')
create?external?table?if?not?exists?ext_transaction_details(
transaction_id?string,
customer_id?string,
store_id?string,
price?double,
product?string,
buydate?string,
buytime?string
)
row?format?delimited?fields?terminated?by?','
location?'/tmp/shopping/data/transaction'
tblproperties('skip.header.line.count'='1')
create?external?table?if?not?exists?ext_store_details(
store_id?string,
store_name?string,
employee_number?int
)
row?format?delimited?fields?terminated?by?','
location?'/tmp/shopping/data/store/'
tblproperties('skip.header.line.count'='1')
create?external?table?if?not?exists?ext_store_review(
transaction_id?string,
store_id?string,
review_score?int
)
row?format?delimited?fields?terminated?by?','
location?'/tmp/shopping/data/review'
tblproperties('skip.header.line.count'='1')
通過UDF自定義 MD5加密函數(shù)
「Create MD5 encryption function」
這里通過UDF自定義 MD5加密函數(shù) ,對地址、郵箱等信息進(jìn)行加密。
--?md5?udf自定義加密函數(shù)
--add?jar?/opt/soft/data/md5.jar
--create?temporary?function?md5?as?'com.shopping.services.Encryption'
--select?md5('abc')
--drop?temporary?function?encrymd5
「Clean and Mask customer_details 創(chuàng)建明細(xì)表」
create?table?if?not?exists?customer_details?
as?select?customer_id,first_name,last_name,md5(email)?email,gender,md5(address)?address,country,job,credit_type,md5(credit_no)?
from?ext_customer_details
對表內(nèi)容進(jìn)行檢查,為數(shù)據(jù)清洗做準(zhǔn)備
「Check ext_transaction_details data」對transaction表的transaction_id進(jìn)行檢查,查看重復(fù)的、錯誤的、以及空值的數(shù)量。
這里從表中我們可以看到transaction_id存在100個重復(fù)的值。
with?
t1?as?(select?'countrow'?as?status,count(transaction_id)?as?val?from?ext_transaction_details),
t2?as?(select?'distinct'?as?status,(count(transaction_id)-count(distinct?transaction_id))?as?val?from?ext_transaction_details),
t3?as?(select?'nullrow'?as?status,count(transaction_id)?as?val?from?ext_transaction_details?where?transaction_id?is?null),
t4?as?(select?'errorexp'?as?status,count(regexp_extract(transaction_id,'^([0-9]{1,4})$',0))?as?val?from?ext_transaction_details)
select?*?from?t1?union?all?select?*?from?t2?union?all?select?*?from?t3?union?all?select?*?from?t4
「Clean transaction_details into partition table」
create?table?if?not?exists?transaction_details(
transaction_id?string,
customer_id?string,
store_id?string,
price?double,
product?string,
buydate?string,
buytime?string
)
partitioned?by?(partday?string)
row?format?delimited?fields?terminated?by?','
stored?as?rcfile
「開啟動態(tài)分區(qū)」
set?hive.exec.dynamic.partition=true
set?hive.exec.dynamic.partition.mode=nonstrict
開啟動態(tài)分區(qū),通過窗口函數(shù)對數(shù)據(jù)進(jìn)行清洗
「Clear data and import data into transaction_details」
--?partday?分區(qū)?transaction_id?重復(fù)?
select?if(t.ct=1,transaction_id,concat(t.transaction_id,'_',t.ct-1))?
transaction_id,customer_id,store_id,price,product,buydate,buytime,date_format(buydate,'yyyy-MM')?
as?partday?
from?(select?*,row_number()?over(partition?by?transaction_id)?as?ct?
from?ext_transaction_details)?t
insert?into?transaction_details?partition(partday)?
select?if(t.ct=1,transaction_id,concat(t.transaction_id,'_',t.ct-1))?transaction_id,customer_id,store_id,price,product,buydate,buytime,date_format(regexp_replace(buydate,'/','-'),'yyyy-MM')?
as?partday?from?(select?*,row_number()?over(partition?by?transaction_id)?as?ct?
from?ext_transaction_details)?t?
「row_number() over(partition by transaction_id)」 窗口函數(shù) :從1開始,按照順序,生成分組內(nèi)記錄的序列,row_number()的值不會存在重復(fù),當(dāng)排序的值相同時,按照表中記錄的順序進(jìn)行排列 ?這里我們對分組的transaction_id if(t.ct=1,transaction_id,concat(t.transaction_id,'_',t.ct-1))如果滿足ct=1,就是transaction_id,否則進(jìn)行字符串拼接生成新的id
「Clean store_review table」
create?table?store_review?
as?select?transaction_id,store_id,nvl(review_score,ceil(rand()*5))?
as?review_score?from?ext_store_review
「NVL(E1, E2)的功能為:如果E1為NULL,則函數(shù)返回E2,否則返回E1本身。」
我們可以看到表中的數(shù)據(jù)存在空值,通過NVL函數(shù)對數(shù)據(jù)進(jìn)行填充。
show?tables
通過清洗后的近源表和明細(xì)表如上。
數(shù)據(jù)分析
Customer分析
找出顧客最常用的信用卡
select?credit_type,count(credit_type)?as?peoplenum?from?customer_details
group?by?credit_type?order?by?peoplenum?desc?limit?1
找出客戶資料中排名前五的職位名稱
select?job,count(job)?as?jobnum?from?customer_details
group?by?job
order?by?jobnum?desc
limit?5
在美國女性最常用的信用卡
select?credit_type,count(credit_type)?as?femalenum?from?customer_details?
where?gender='Female'
group?by?credit_type
order?by?femalenum?desc
limit?1
按性別和國家進(jìn)行客戶統(tǒng)計
select?count(*)?as?customernum,country,gender?from?customer_details
group?by?country,gender
Transaction分析
計算每月總收入
select?partday,sum(price)?as?countMoney?from?transaction_details?group?by?partday
計算每個季度的總收入「Create Quarter Macro 定義季度宏」,將時間按季度進(jìn)行劃分
create?temporary?macro?
calQuarter(dt?string)?
concat(year(regexp_replace(dt,'/','-')),'年第',ceil(month(regexp_replace(dt,'/','-'))/3),'季度')
select?calQuarter(buydate)?as?quarter,sum(price)?as?sale?
from?transaction_details?group?by?calQuarter(buydate)

按年計算總收入
create?temporary?macro?calYear(dt?string)?year(regexp_replace(dt,'/','-'))
select?calYear(buydate)?as?year,sum(price)?as?sale?from?transaction_details?group?by?calYear(buydate)
按工作日計算總收入
create?temporary?macro?calWeek(dt?string)?concat('星期',dayofweek(regexp_replace(dt,'/','-'))-1)
select?concat('星期',dayofweek(regexp_replace(buydate,'/','-'))-1)?as?week,sum(price)?as?sale?
from?transaction_details?group?by?dayofweek(regexp_replace(buydate,'/','-'))

按時間段計算總收入(需要清理數(shù)據(jù))
select?concat(regexp_extract(buytime,'[0-9]{1,2}',0),'時')?as?time,sum(price)?as?sale?from?transaction_details?group?by?regexp_extract(buytime,'[0-9]{1,2}',0)

按時間段計算平均消費「Time macro」
create?temporary?macro?calTime(time?string)?if(split(time,'?')[1]='PM',regexp_extract(time,'[0-9]{1,2}',0)+12,
if(split(time,'?')[1]='AM',regexp_extract(time,'[0-9]{1,2}',0),split(time,':')[0]))
select?calTime(buytime)?as?time,sum(price)?as?sale?from?transaction_details?group?by?calTime(buytime)?

--define?time?bucket?
--early?morning:?(5:00,?8:00]
--morning:?(8:00,?11:00]
--noon:?(11:00,?13:00]
--afternoon:?(13:00,?18:00]
--evening:?(18:00,?22:00]
--night:?(22:00,?5:00]?--make?it?as?else,?since?it?is?not?liner?increasing
--We?also?format?the?time.?1st?format?time?to?19:23?like,?then?compare,?then?convert?minites?to?hours
with
t1?as
(select?calTime(buytime)?as?time,sum(price)?as?sale?from?transaction_details?group?by?calTime(buytime)?order?by?time),
t2?as
(select?if(time>5?and?time<=8,'early?morning',if(time?>8?and?time<=11,'moring',if(time>11?and?time?<13,'noon',
if(time>13?and?time?<=18,'afternoon',if(time?>18?and?time?<=22,'evening','night')))))?as?sumtime,sale?
from?t1)
select?sumtime,sum(sale)?from?t2?
group?by?sumtime

按工作日計算平均消費
select?concat('星期',dayofweek(regexp_replace(buydate,'/','-'))-1)?
as?week,avg(price)?as?sale?from?transaction_details?
where?dayofweek(regexp_replace(buydate,'/','-'))-1?!=0?and?dayofweek(regexp_replace(buydate,'/','-'))-1?!=6
group?by?dayofweek(regexp_replace(buydate,'/','-'))

計算年、月、日的交易總數(shù)
select?buydate?as?month,count(*)?as?salenum?from?transaction_details?group?by?buydate
找出交易量最大的10個客戶
select?c.customer_id,c.first_name,c.last_name,count(c.customer_id)?as?custnum?from?customer_details?c
inner?join?transaction_details?t
on?c.customer_id=t.customer_id
group?by?c.customer_id,c.first_name,c.last_name
order?by?custnum?desc
limit?10
找出消費最多的前10位顧客
select?c.customer_id,c.first_name,c.last_name,sum(price)?as?sumprice?from?customer_details?c
inner?join?transaction_details?t
on?c.customer_id=t.customer_id
group?by?c.customer_id,c.first_name,c.last_name
order?by?sumprice?desc
limit?10
統(tǒng)計該期間交易數(shù)量最少的用戶
select?c.customer_id,c.first_name,c.last_name,count(*)?as?custnum?from?customer_details?c
inner?join?transaction_details?t
on?c.customer_id=t.customer_id
group?by?c.customer_id,c.first_name,c.last_name
order?by?custnum?asc
limit?1
計算每個季度的獨立客戶總數(shù)
select?calQuarter(buydate)?as?quarter,count(distinct?customer_id)?as?uninum
from?transaction_details
group?by?calQuarter(buydate)
計算每周的獨立客戶總數(shù)
select?calWeek(buydate)?as?quarter,count(distinct?customer_id)?as?uninum
from?transaction_details
group?by?calWeek(buydate)
計算整個活動客戶平均花費的最大值
select?sum(price)/count(*)?as?sale
from?transaction_details
group?by?customer_id
order?by?sale?desc
limit?1
統(tǒng)計每月花費最多的客戶
with?
t1?as
(select?customer_id,partday,count(distinct?buydate)?as?visit?from?transaction_details?group?by?partday,customer_id),
t2?as
(select?customer_id,partday,visit,row_number()?over(partition?by?partday?order?by?visit?desc)?as?visitnum?from?t1)
select?*?from?t2?where?visitnum=1?
統(tǒng)計每月訪問次數(shù)最多的客戶
with
t1?as
(select?customer_id,partday,sum(price)?as?pay?from?transaction_details?group?by?partday,customer_id),
t2?as
(select?customer_id,partday,pay,row_number()?over(partition?by?partday?order?by?pay?desc)?as?paynum?from?t1)
select?*?from?t2?where?paynum=1
按總價找出最受歡迎的5種產(chǎn)品
select?product,sum(price)?as?sale?from?transaction_details?
group?by?product
order?by?sale?desc
limit?5
根據(jù)購買頻率找出最暢銷的5種產(chǎn)品
select?product,count(*)?as?num?from?transaction_details?
group?by?product
order?by?num?desc
limit?5
根據(jù)客戶數(shù)量找出最受歡迎的5種產(chǎn)品
select?product,count(distinct?customer_id)?as?num?from?transaction_details
group?by?product
order?by?num?desc
limit?5
驗證前5個details
select?*?from?transaction_details?where?product?in?('Goat?-?Whole?Cut')
Store分析
按客流量找出最受歡迎的商店
with?
t1?as?(select?store_id,count(*)?as?visit?from?transaction_details?
group?by?
store_id?order?by?visit?desc?limit?1)
select?s.store_name,t.visit?
from?t1?t?
inner?join?
ext_store_details?s?
on?t.store_id=s.store_id
根據(jù)顧客消費價格找出最受歡迎的商店
with?
t1?as?(select?store_id,sum(price)?as?sale?from?transaction_details?
group?by?
store_id?order?by?sale?desc?limit?1)
select?s.store_name,t.sale?
from?t1?t?
inner?join?
ext_store_details?s?
on?t.store_id=s.store_id
根據(jù)顧客交易情況找出最受歡迎的商店
with
t1?as?
(select?store_id,store_name?from?ext_store_details)
select?t.store_id,store_name,count(distinct?t.customer_id)?as?num
from?transaction_details?t
inner?join?t1?s
on?s.store_id=t.store_id
group?by?t.store_id,store_name
order?by?num?desc
limit?1
根據(jù)商店和唯一的顧客id獲取最受歡迎的產(chǎn)品
with
t1?as?(select?store_id,product,count(distinct?customer_id)?as?num?from?transaction_details
group?by?store_id,product?order?by?num?desc?limit?1)
select?s.store_name,t.num,t.product?
from?t1?t?
inner?join?
ext_store_details?s?
on?t.store_id=s.store_id
獲取每個商店的員工與顧客比
with
t1?as?(select?store_id,count(distinct?customer_id)?as?num?from?transaction_details
group?by?store_id?)
select?s.store_name,employee_number/num?as?vs?from?t1?t
inner?join?ext_store_details?s?
on?t.store_id=s.store_id
按年和月計算每家店的收入
select?store_id,partday,sum(price)?from?transaction_details?group?by?store_id,partday
按店鋪制作總收益餅圖
select?store_id,sum(price)?from?transaction_details?group?by?store_id
找出每個商店最繁忙的時間段
with
t1?as
(select?store_id,count(customer_id)?as?peoplenum?from?transaction_details?group?by?store_id,concat(regexp_extract(buytime,'[0-9]{1,2}',0),'時')),
t2?as
(select?store_id,peoplenum,row_number()?over(partition?by?store_id?order?by?peoplenum?desc)?as?peo?from?t1?)
select?t.store_id,e.store_name,t.peoplenum?from?t2?t
inner?join?ext_store_details?e
on?e.store_id?=?t.store_id
where?peo?=1
找出每家店的忠實顧客
with
t1?as
(select?customer_id,store_id,count(customer_id)?as?visit?from?transaction_details?group?by?store_id,customer_id?),
t2?as
(select?customer_id,store_id,visit,row_number()?over(partition?by?store_id?order?by?visit?desc)?as?most?from?t1)
select?r.customer_id,concat(first_name,last_name)?as?customer_name,r.store_id,store_name,r.visit?from?t2?r
inner?join?customer_details?c
on?c.customer_id=r.customer_id
inner?join?ext_store_details?e
on?e.store_id=r.store_id
where?most=1
根據(jù)每位員工的最高收入找出明星商店
with
t1?as
(select?store_id,sum(price)?as?sumprice?from?transaction_details?group?by?store_id)
select?t.store_id,s.store_name,sumprice/employee_number?as?avgprice??from?t1?t
inner?join?ext_store_details?s
on?s.store_id=t.store_id
order?by?avgprice?desc
Review分析
在ext_store_review中找出存在沖突的交易映射關(guān)系
select?t.transaction_id,t.store_id?from?transaction_details?t
inner?join?ext_store_review?e
on?e.transaction_id=t.transaction_id
where?e.store_id!=t.store_id
了解客戶評價的覆蓋率
with
trans?as?(select?store_id,count(transaction_id)?as?countSale?from?transaction_details?group?by?store_id),
rev?as?(select?store_id,count(distinct?transaction_id)?as?review?from?store_review?group?by?store_id)
select?s.store_name,(r.review*100/t.countSale)?as?cover?from??trans?t?
inner?join?rev?r?
on?t.store_id=r.store_id?
inner?join?ext_store_details?s
on?t.store_id=s.store_id
根據(jù)評分了解客戶的分布情況
select?store_id,review_score,count(review_score)?as?numview?from?ext_store_review??where?review_score>0?group?by?review_score,store_id
根據(jù)交易了解客戶的分布情況
select?store_id,count(transaction_id)?as?transactionnum?from?ext_store_review??group?by?store_id
客戶給出的最佳評價是否總是同一家門店
select?store_id,customer_id,count(customer_id)?as?visit?from?transaction_details?t
join?ext_store_review?e
on?e.transaction_id?=?t.transaction_id
where?e.review_score=5
group?by?t.store_id,t.customer_id
